Skip to main content

ARCH for Python

Project description

arch

arch

Autoregressive Conditional Heteroskedasticity (ARCH) and other tools for financial econometrics, written in Python (with Cython and/or Numba used to improve performance)

Metric
Latest Release PyPI version
conda-forge version
Continuous Integration Build Status
Appveyor Build Status
Coverage codecov
Code Quality Codacy Badge
codebeat badge
Citation DOI
Documentation Documentation Status

Module Contents

Python 3

arch is Python 3 only. Version 4.8 is the final version that supported Python 2.7.

Documentation

Documentation from the main branch is hosted on my github pages.

Released documentation is hosted on read the docs.

More about ARCH

More information about ARCH and related models is available in the notes and research available at Kevin Sheppard's site.

Contributing

Contributions are welcome. There are opportunities at many levels to contribute:

  • Implement new volatility process, e.g., FIGARCH
  • Improve docstrings where unclear or with typos
  • Provide examples, preferably in the form of IPython notebooks

Examples

Volatility Modeling

  • Mean models
    • Constant mean
    • Heterogeneous Autoregression (HAR)
    • Autoregression (AR)
    • Zero mean
    • Models with and without exogenous regressors
  • Volatility models
    • ARCH
    • GARCH
    • TARCH
    • EGARCH
    • EWMA/RiskMetrics
  • Distributions
    • Normal
    • Student's T
    • Generalized Error Distribution

See the univariate volatility example notebook for a more complete overview.

import datetime as dt
import pandas_datareader.data as web
st = dt.datetime(1990,1,1)
en = dt.datetime(2014,1,1)
data = web.get_data_yahoo('^FTSE', start=st, end=en)
returns = 100 * data['Adj Close'].pct_change().dropna()

from arch import arch_model
am = arch_model(returns)
res = am.fit()

Unit Root Tests

  • Augmented Dickey-Fuller
  • Dickey-Fuller GLS
  • Phillips-Perron
  • KPSS
  • Zivot-Andrews
  • Variance Ratio tests

See the unit root testing example notebook for examples of testing series for unit roots.

Cointegration Testing and Analysis

  • Tests
    • Engle-Granger Test
    • Phillips-Ouliaris Test
  • Cointegration Vector Estimation
    • Canonical Cointegrating Regression
    • Dynamic OLS
    • Fully Modified OLS

See the cointegration testing example notebook for examples of testing series for cointegration.

Bootstrap

  • Bootstraps
    • IID Bootstrap
    • Stationary Bootstrap
    • Circular Block Bootstrap
    • Moving Block Bootstrap
  • Methods
    • Confidence interval construction
    • Covariance estimation
    • Apply method to estimate model across bootstraps
    • Generic Bootstrap iterator

See the bootstrap example notebook for examples of bootstrapping the Sharpe ratio and a Probit model from statsmodels.

# Import data
import datetime as dt
import pandas as pd
import numpy as np
import pandas_datareader.data as web
start = dt.datetime(1951,1,1)
end = dt.datetime(2014,1,1)
sp500 = web.get_data_yahoo('^GSPC', start=start, end=end)
start = sp500.index.min()
end = sp500.index.max()
monthly_dates = pd.date_range(start, end, freq='M')
monthly = sp500.reindex(monthly_dates, method='ffill')
returns = 100 * monthly['Adj Close'].pct_change().dropna()

# Function to compute parameters
def sharpe_ratio(x):
    mu, sigma = 12 * x.mean(), np.sqrt(12 * x.var())
    return np.array([mu, sigma, mu / sigma])

# Bootstrap confidence intervals
from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(returns)
ci = bs.conf_int(sharpe_ratio, 1000, method='percentile')

Multiple Comparison Procedures

  • Test of Superior Predictive Ability (SPA), also known as the Reality Check or Bootstrap Data Snooper
  • Stepwise (StepM)
  • Model Confidence Set (MCS)

See the multiple comparison example notebook for examples of the multiple comparison procedures.

Long-run Covariance Estimation

Kernel-based estimators of long-run covariance including the Bartlett kernel which is known as Newey-West in econometrics. Automatic bandwidth selection is available for all of the covariance estimators.

from arch.covariance.kernel import Bartlett
from arch.data import nasdaq
data = nasdaq.load()
returns = data[["Adj Close"]].pct_change().dropna()

cov_est = Bartlett(returns ** 2)
# Get the long-run covariance
cov_est.cov.long_run

Requirements

These requirements reflect the testing environment. It is possible that arch will work with older versions.

  • Python (3.9+)
  • NumPy (1.19+)
  • SciPy (1.5+)
  • Pandas (1.1+)
  • statsmodels (0.12+)
  • matplotlib (3+), optional

Optional Requirements

  • Numba (0.49+) will be used if available and when installed without building the binary modules. In order to ensure that these are not built, you must set the environment variable ARCH_NO_BINARY=1 and install without the wheel.
export ARCH_NO_BINARY=1
python -m pip install arch

or if using Powershell on windows

$env:ARCH_NO_BINARY=1
python -m pip install arch
  • jupyter and notebook are required to run the notebooks

Installing

Standard installation with a compiler requires Cython. If you do not have a compiler installed, the arch should still install. You will see a warning but this can be ignored. If you don't have a compiler, numba is strongly recommended.

pip

Releases are available PyPI and can be installed with pip.

pip install arch

You can alternatively install the latest version from GitHub

pip install git+https://github.com/bashtage/arch.git

Setting the environment variable ARCH_NO_BINARY=1 can be used to disable compilation of the extensions.

Anaconda

conda users can install from conda-forge,

conda install arch-py -c conda-forge

Note: The conda-forge name is arch-py.

Windows

Building extension using the community edition of Visual Studio is simple when using Python 3.8 or later. Building is not necessary when numba is installed since just-in-time compiled code (numba) runs as fast as ahead-of-time compiled extensions.

Developing

The development requirements are:

  • Cython (0.29+, if not using ARCH_NO_BINARY=1, supports 3.0.0b2+)
  • pytest (For tests)
  • sphinx (to build docs)
  • sphinx-immaterial (to build docs)
  • jupyter, notebook and nbsphinx (to build docs)

Installation Notes

  1. If Cython is not installed, the package will be installed as-if ARCH_NO_BINARY=1 was set.
  2. Setup does not verify these requirements. Please ensure these are installed.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

arch-6.3.0.tar.gz (3.7 MB view details)

Uploaded Source

Built Distributions

arch-6.3.0-cp312-cp312-win_amd64.whl (923.7 kB view details)

Uploaded CPython 3.12 Windows x86-64

arch-6.3.0-cp312-cp312-musllinux_1_1_x86_64.whl (985.9 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

arch-6.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (976.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

arch-6.3.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (946.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

arch-6.3.0-cp312-cp312-macosx_11_0_arm64.whl (930.3 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

arch-6.3.0-cp312-cp312-macosx_10_9_x86_64.whl (949.9 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

arch-6.3.0-cp311-cp311-win_amd64.whl (924.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

arch-6.3.0-cp311-cp311-musllinux_1_1_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

arch-6.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (983.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

arch-6.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (955.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

arch-6.3.0-cp311-cp311-macosx_11_0_arm64.whl (929.0 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

arch-6.3.0-cp311-cp311-macosx_10_9_x86_64.whl (952.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

arch-6.3.0-cp310-cp310-win_amd64.whl (924.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

arch-6.3.0-cp310-cp310-musllinux_1_1_x86_64.whl (999.5 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

arch-6.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (983.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

arch-6.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (956.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

arch-6.3.0-cp310-cp310-macosx_11_0_arm64.whl (928.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

arch-6.3.0-cp310-cp310-macosx_10_9_x86_64.whl (951.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

arch-6.3.0-cp39-cp39-win_amd64.whl (925.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

arch-6.3.0-cp39-cp39-win32.whl (885.9 kB view details)

Uploaded CPython 3.9 Windows x86

arch-6.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (984.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

arch-6.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (957.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

arch-6.3.0-cp39-cp39-macosx_11_0_arm64.whl (929.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

arch-6.3.0-cp39-cp39-macosx_10_9_x86_64.whl (952.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file arch-6.3.0.tar.gz.

File metadata

  • Download URL: arch-6.3.0.tar.gz
  • Upload date:
  • Size: 3.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for arch-6.3.0.tar.gz
Algorithm Hash digest
SHA256 6c56d8cb8a530723c68cb432bb9839490272c90614264d4ec241fe56b1fd96b7
MD5 4e6db4f722e4171d819aebf1c5147f78
BLAKE2b-256 8f82e2bc21424d3803dfebe63311079e2c934bc0899949917ace067508ca7fb8

See more details on using hashes here.

File details

Details for the file arch-6.3.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: arch-6.3.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 923.7 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for arch-6.3.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 10bad48b79059ae3661c7d744e0aea3c857211c1b447bdc466fd54664c2079e1
MD5 04ff1dc695a2192c43fee53df8bdbfd7
BLAKE2b-256 c1b80e5e5ab71561476f75c293a7a201910a7009b30d30eb160e173321ffe3cc

See more details on using hashes here.

File details

Details for the file arch-6.3.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for arch-6.3.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 35b4e480d6241691cce591950f99d688e6866761e8946e68eaae8bb4f73db00c
MD5 2d78c9141b798fe63acc5ccc97fdfbd0
BLAKE2b-256 44d7fa704c5e82b06b7983c3538c06a9f501788fabc56bf49dd10d714f2279f9

See more details on using hashes here.

File details

Details for the file arch-6.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arch-6.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 573913e6ee2ab703dcda2bba73ebc20dd6f4ab2622e640ac1e50367a5a99449c
MD5 28b4998dd0c860dd452dab84d3758444
BLAKE2b-256 74e8f8833db3188a63e66bb1117cc1c25449b0a98aaf60e1fc91918374c09e44

See more details on using hashes here.

File details

Details for the file arch-6.3.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for arch-6.3.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 82874a0831fa13a28b3d3eb934a61ca26fd92b2e37a716147601b6d0a1292c9a
MD5 713843247f8d4967a7164ab66a953680
BLAKE2b-256 47ae0b4899e325e08729893648519d72012214fcfb674083ea054dbb13f4a407

See more details on using hashes here.

File details

Details for the file arch-6.3.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for arch-6.3.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c67187d2bfa66c3a4e2bd67423780e88f63fc5413bf97adf765b034c8226b969
MD5 993eb9440ad0a7ae13462de8e60e8ca0
BLAKE2b-256 9685af43e88cbb3b25ee01e8c253ce81c92fc9daa6e5b1b46f90ee80312af4db

See more details on using hashes here.

File details

Details for the file arch-6.3.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for arch-6.3.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6f406b1d2b9e07cb233779f7f737541695c04ae07caea26082c028fbe6766ca6
MD5 52191659e2003ffa0dcf6dc1b0bb8270
BLAKE2b-256 49fd977eb1ba3978a5736e84e128c407e277678923764238930ca85fc8c6732c

See more details on using hashes here.

File details

Details for the file arch-6.3.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: arch-6.3.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 924.1 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for arch-6.3.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 844ab59b7fb24cd65ada9491e6e2423a6dac76f0b53e1350ec469efeb45cf617
MD5 e22058538cef83bfb399750d63f73ef3
BLAKE2b-256 24b441ffe91f46eb3f49bf022c66f8768f469617329718d4246953ad3853c073

See more details on using hashes here.

File details

Details for the file arch-6.3.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for arch-6.3.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5aa8d428f6147e6f22343673c54ea4846968a5e8d37f35b39d824a0a0bf115ee
MD5 9b53a81415ca311b5c3b8e16b22cd3ab
BLAKE2b-256 f9e52461fe93d3666a8ec5481c1e92f3b23ec7a7222b1d78e404287489fefbd1

See more details on using hashes here.

File details

Details for the file arch-6.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arch-6.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d1488ab7b4f15a071581e3ea2bc5199af4586558e414da539a62919ae2bcc11c
MD5 b4d132209e573b0e1d0f329e9b4f441c
BLAKE2b-256 184a70ff5cb95d4c7ae3ce2bd614d1a80fead99ae3508a171fdeaa86ea728ecf

See more details on using hashes here.

File details

Details for the file arch-6.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for arch-6.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 830add5723f7491226f4a58e97c84b7bfa584255581d8f9c624fa97de5f7686d
MD5 e22663f1595166c0421e31792c506e51
BLAKE2b-256 226188a820f65e6e8ff4a218a3775febd947e6e1513a6b68c6c526d0e8ca301f

See more details on using hashes here.

File details

Details for the file arch-6.3.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for arch-6.3.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9a53c8b1d8f6237ebe4718451b1ef6fc5738a124e0454bdd6fabf22bdbe570da
MD5 d22c3bba6ca64b5c87908d90574ded66
BLAKE2b-256 b537fb0d18e7d9d6510576430cb728c0ba41a3d4204c7f442ae57f543a266f0d

See more details on using hashes here.

File details

Details for the file arch-6.3.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for arch-6.3.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 af144ec65d6a99cc1a5c06327cf1c957de7a6936e84bd4b3d7604cc0084b2f02
MD5 e1d8bbb2a38065306414a4cc98b657ce
BLAKE2b-256 1d42ab20f33e2a67069c965525cb07b526d9e80e4bc04407d391e37969759a80

See more details on using hashes here.

File details

Details for the file arch-6.3.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: arch-6.3.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 924.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for arch-6.3.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 92997633de472d2d1c142262d947bc4b6e7ad50e73686695cf3767942b6a6a2f
MD5 075e1531246866bd5787b17bc9f8dccc
BLAKE2b-256 1235920d6902c90d7a9dbc0763e154aa359c13c9bd80349533fc78e9bd4663a9

See more details on using hashes here.

File details

Details for the file arch-6.3.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for arch-6.3.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5446d681555419cb0739006c706c69435975e93e5104a8cf114bdea88a3e841a
MD5 7c6983a6bcbc00580faf1be02b849e47
BLAKE2b-256 090ea798deff76a8ea231c539d3b98c353304f98dcedcd4dfbde4377ad4f3ade

See more details on using hashes here.

File details

Details for the file arch-6.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arch-6.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d9cf2ddeb076e276d0f350449253d578c59df8170738727a2b5171ae9d98784b
MD5 f040eba1191341aca5599b89752f5e0d
BLAKE2b-256 ce2a23ca74abfd46ee36361768b035a70db9a87ed1370f55914c0c3ebbb41a58

See more details on using hashes here.

File details

Details for the file arch-6.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for arch-6.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5573b4f9331993019b8fcbb2e6edf249e17a9a5f27a02c0fc2c07a1a41da9f3b
MD5 0a0404973efd1b7226a5cdfd71417381
BLAKE2b-256 eeaefeaf15c7f8bcbd73316ea3e02c5a617122a3ad8aa8933b98378310ab15d7

See more details on using hashes here.

File details

Details for the file arch-6.3.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for arch-6.3.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ecc23e58836c12073f105c4bd78efd3fb1caf335b0d3d80f5914fe01a6eaa3fc
MD5 7658f6a2bdfab94332bdf0cead860078
BLAKE2b-256 c2dc21f6a8980ae8ae208f458a9e38caafde1af1410445b3af664ca5013ccb2e

See more details on using hashes here.

File details

Details for the file arch-6.3.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for arch-6.3.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 179ea15e96d1aafdf88c470f9d4cbda867e5a379b629dde282c1d85691d66598
MD5 dcb5ce0bc14c68237bad520ef19f1a64
BLAKE2b-256 8bcddb25be70967416ba9a30d523e83c3b9a53ec0a4b0d8e497875151967ad7e

See more details on using hashes here.

File details

Details for the file arch-6.3.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: arch-6.3.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 925.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for arch-6.3.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 21487863371d4d36d202f06974db5095b83339c10faeec0e67f1acc7cf7d22dc
MD5 769e06acc3aa1382fd173da35625e9e1
BLAKE2b-256 188a831699d9db60537ad29edc66eea35b3b09f71e293999d870913923f1764d

See more details on using hashes here.

File details

Details for the file arch-6.3.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: arch-6.3.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 885.9 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for arch-6.3.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 c36b19010644dd42830fbd6bbe03f961270fb9e4af4afae24d38c1685b6e3e24
MD5 69b265acbc8d4307f000fd53d8a01bac
BLAKE2b-256 116e321afca1a7f2a1a69b47524e7df4332b9c68ee61e30e0a45660e104a5392

See more details on using hashes here.

File details

Details for the file arch-6.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arch-6.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d3c1138b80043b3179ad2fe66127fa799c5c19759c15284d70945736463ea732
MD5 d8eaa73179746e220bbc0588a8312366
BLAKE2b-256 5bbd9acf51ef66243654945966b7378cdf4b284b9b523afac98fc3cbe154d1ee

See more details on using hashes here.

File details

Details for the file arch-6.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for arch-6.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 88c61d8909971110427007fba5021c1f5fcc7cac386ca961d38a6501b76ff207
MD5 83edab6e967fcf33af31292ebe3d14fe
BLAKE2b-256 717ab7110ec66648b49f251f056667f5f437abb8f6be4003fbde46e70c98efdf

See more details on using hashes here.

File details

Details for the file arch-6.3.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for arch-6.3.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d0ddf235084f8ef7b396ff4eb259a03759c34daec7ab2c777d3fe7271418518e
MD5 9d1043f6a10b8e92a5f972a81bebc49d
BLAKE2b-256 eef7c604ba46b39bf638467b1f9a579b6c043072f7ed064414d9f917181fd486

See more details on using hashes here.

File details

Details for the file arch-6.3.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for arch-6.3.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0b82d4c1c6012d5f6ce80ba85020db281658ada0af448e18fa4b5424a0e2f7c2
MD5 a1f63f660e0dbfe1f7dee2d06a18b2ba
BLAKE2b-256 e12bdb008a09c9ef33dd31a658f0355e692c67ab3d18e17bb6f7491d3c82328c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page