Skip to main content

A napari plugin to detect and visualize collective signaling events

Project description

arcos-gui

License PyPI conda-forge Python Version tests codecov napari hub

A napari plugin to detect and visualize collective signaling events


Automated Recognition of Collective Signalling (ARCOS) is an algorithm to identify collective spatial events in time series data. It is available as an R (ARCOS) and python (arcos4py) package. ARCOS can identify and visualize collective protein activation in 2- and 3D cell cultures over time.

This plugin integrates ARCOS into napari. Users can import tracked time-series data in CSV format or load data from napari-layer properties (such as the ones generated with napari-skimage-regionprops. The plugin provides GUI elements to process this data with ARCOS. Layers containing the detected collective events are subsequently added to the viewer.

Following analysis, the user can export the output as a CSV file with the detected collective events or as a sequence of images to generate a movie.

Watch full demo on youtube (older plugin version)

Installation

You can install arcos-gui via pip:

pip install arcos-gui

Or via conda-forge:

conda install -c conda-forge arcos-gui

Usage

The plugin can be started from the napari menu Plugins > ARCOS GUI. For detailed instructions on how to use the plugin, please refer to the Usage section of the documentation.

Contributing

Contributions are very welcome. Tests can be run with tox, please ensure the coverage at least stays the same before you submit a pull request. See the Contributing Guide for more information.

License

Distributed under the terms of the BSD-3 license, "arcos-gui" is free and open-source software

Issues

If you encounter any problems, please file an issue along with a detailed description.

Credits

We were able to develop this plugin in part due to funding from the CZI napari Plugin Foundation Grant.

This napari plugin was generated with Cookiecutter using @napari's cookiecutter-napari-plugin template.

Citation

If you use this plugin in your research, please cite the following paper:

@article{10.1083/jcb.202207048,
    author = {Gagliardi, Paolo Armando and Grädel, Benjamin and Jacques, Marc-Antoine and Hinderling, Lucien and Ender, Pascal and Cohen, Andrew R. and Kastberger, Gerald and Pertz, Olivier and Dobrzyński, Maciej},
    title = "{Automatic detection of spatio-temporal signaling patterns in cell collectives}",
    journal = {Journal of Cell Biology},
    volume = {222},
    number = {10},
    pages = {e202207048},
    year = {2023},
    month = {07},
    abstract = "{Increasing experimental evidence points to the physiological importance of space–time correlations in signaling of cell collectives. From wound healing to epithelial homeostasis to morphogenesis, coordinated activation of biomolecules between cells allows the collectives to perform more complex tasks and to better tackle environmental challenges. To capture this information exchange and to advance new theories of emergent phenomena, we created ARCOS, a computational method to detect and quantify collective signaling. We demonstrate ARCOS on cell and organism collectives with space–time correlations on different scales in 2D and 3D. We made a new observation that oncogenic mutations in the MAPK/ERK and PIK3CA/Akt pathways of MCF10A epithelial cells hyperstimulate intercellular ERK activity waves that are largely dependent on matrix metalloproteinase intercellular signaling. ARCOS is open-source and available as R and Python packages. It also includes a plugin for the napari image viewer to interactively quantify collective phenomena without prior programming experience.}",
    issn = {0021-9525},
    doi = {10.1083/jcb.202207048},
    url = {https://doi.org/10.1083/jcb.202207048},
    eprint = {https://rupress.org/jcb/article-pdf/222/10/e202207048/1915749/jcb/_202207048.pdf},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

arcos-gui-0.1.3.tar.gz (719.5 kB view details)

Uploaded Source

Built Distribution

arcos_gui-0.1.3-py3-none-any.whl (728.9 kB view details)

Uploaded Python 3

File details

Details for the file arcos-gui-0.1.3.tar.gz.

File metadata

  • Download URL: arcos-gui-0.1.3.tar.gz
  • Upload date:
  • Size: 719.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.13

File hashes

Hashes for arcos-gui-0.1.3.tar.gz
Algorithm Hash digest
SHA256 9e58d120c2e45acc421b86475d3f1900fb46453605baa67dfb5a510142e61ac0
MD5 b353cbe81f13e9f35fccde6b8a78b32e
BLAKE2b-256 001e28369239f0965eed706339ff52f17e405ddd7a32bdff7ea629d5f3ce873c

See more details on using hashes here.

File details

Details for the file arcos_gui-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: arcos_gui-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 728.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.13

File hashes

Hashes for arcos_gui-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 fc7e09fc016e75e158343e7766ba6c8cd092b7165725ef98dadf4da579f7337e
MD5 cb8363de56b590e2edacaca9c466ddbd
BLAKE2b-256 afaae9718a60994b0348284ee85a7c622db667af09172a23ea6faddab0105491

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page