Skip to main content

記述統計のためのクラスや可視化のあれこれ。ダミーデータも作れるよ。

Project description

arekore

記述統計のためのクラスや可視化のあれこれ。ダミーデータも作れるよ。

Quickstart

1次元データ

import matplotlib.pyplot as plt
import numpy as np
from arekore import dummy, viz
from arekore.data1d import Data1d, plot_hist


def main():
    # ダミーデータ生成
    rawdata = dummy.dist_normal_1d(mean=50, std=10, n=100)

    # 1次元データオブジェクトの作成
    d = Data1d(rawdata, bins=np.arange(0, 100 + 1, 5))

    # ヒストグラムの描画
    fig, ax = viz.fig_ax(figsize=(8, 6))
    plot_hist(ax, d)
    plt.show()

    # 度数分布表もつくれる
    freq_table_md = d.freq_table_as_md()

    print(freq_table_md)
    """| 階級           |   階級値 |   度数 |   累積度数 |   相対度数 |   累積相対度数 |
|:---------------|---------:|-------:|-----------:|-----------:|---------------:|
| (-0.001, 10.0] |        5 |      0 |          0 |       0    |           0    |
| (10.0, 20.0]   |       15 |      0 |          0 |       0    |           0    |
| (20.0, 30.0]   |       25 |      1 |          1 |       0.01 |           0.01 |
| (30.0, 40.0]   |       35 |     14 |         15 |       0.14 |           0.15 |
| (40.0, 50.0]   |       45 |     30 |         45 |       0.3  |           0.45 |
| (50.0, 60.0]   |       55 |     37 |         82 |       0.37 |           0.82 |
| (60.0, 70.0]   |       65 |     16 |         98 |       0.16 |           0.98 |
| (70.0, 80.0]   |       75 |      2 |        100 |       0.02 |           1    |
| (80.0, 90.0]   |       85 |      0 |        100 |       0    |           1    |
| (90.0, 100.0]  |       95 |      0 |        100 |       0    |           1    |
"""


if __name__ == '__main__':
    main()

data1d_histogram

2次元データ

import matplotlib.pyplot as plt

from arekore import dummy, viz
from arekore.data2d import Data2d, plot_regression_line, plot_scatter


def main():
    # ダミーデータ生成
    x, y = dummy.xy_specified_cor(r=0.8, n=50)

    # 2次元データオブジェクトの作成
    d = Data2d(x=x, y=y)

    # 散布図と回帰直線を描画
    fig, ax = viz.fig_ax(figsize=(8, 6))
    plot_scatter(ax, d)
    plot_regression_line(ax, d)

    plt.show()


if __name__ == '__main__':
    main()

data2d_scatter_and_regresson_line

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

arekore-0.1.0.tar.gz (6.4 kB view details)

Uploaded Source

Built Distribution

arekore-0.1.0-py3-none-any.whl (7.4 kB view details)

Uploaded Python 3

File details

Details for the file arekore-0.1.0.tar.gz.

File metadata

  • Download URL: arekore-0.1.0.tar.gz
  • Upload date:
  • Size: 6.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.13 CPython/3.9.13 Darwin/21.6.0

File hashes

Hashes for arekore-0.1.0.tar.gz
Algorithm Hash digest
SHA256 b5b437edaf1e8e20507e4a0dfebea1f26c12da81095375a4ad74b53f06864bb7
MD5 079abdd38e6fe09a63b39af1140f86c2
BLAKE2b-256 932fbdf63d67e38a25d1c6ed2581a95fe5108e7a1a49560b1bd5647d3ef94c36

See more details on using hashes here.

File details

Details for the file arekore-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: arekore-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 7.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.13 CPython/3.9.13 Darwin/21.6.0

File hashes

Hashes for arekore-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2d7e97ebead3c3882a0ede4405f6b2e0fa7abd322ec54df002929551336c2e10
MD5 021d29353b725ee3dd069ad1e3a89aec
BLAKE2b-256 3274cdc5ec61e9fc32a591cd789938852e6936d4149a9ead5f7b98d5a04bde2d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page