Skip to main content

記述統計のためのクラスや可視化のあれこれ。ダミーデータも作れるよ。

Project description

arekore

記述統計のためのクラスや可視化のあれこれ。ダミーデータも作れるよ。

Quickstart

1次元データ

import matplotlib.pyplot as plt
import numpy as np
from arekore import dummy, viz
from arekore.data1d import Data1d, plot_hist


def main():
    # ダミーデータ生成
    rawdata = dummy.dist_normal_1d(mean=50, std=10, n=100)

    # 1次元データオブジェクトの作成
    d = Data1d(rawdata, bins=np.arange(0, 100 + 1, 5))

    # ヒストグラムの描画
    fig, ax = viz.fig_ax(figsize=(8, 6))
    plot_hist(ax, d)
    plt.show()

    # 度数分布表もつくれる
    freq_table_md = d.freq_table_as_md()

    print(freq_table_md)
    """| 階級           |   階級値 |   度数 |   累積度数 |   相対度数 |   累積相対度数 |
|:---------------|---------:|-------:|-----------:|-----------:|---------------:|
| (-0.001, 10.0] |        5 |      0 |          0 |       0    |           0    |
| (10.0, 20.0]   |       15 |      0 |          0 |       0    |           0    |
| (20.0, 30.0]   |       25 |      1 |          1 |       0.01 |           0.01 |
| (30.0, 40.0]   |       35 |     14 |         15 |       0.14 |           0.15 |
| (40.0, 50.0]   |       45 |     30 |         45 |       0.3  |           0.45 |
| (50.0, 60.0]   |       55 |     37 |         82 |       0.37 |           0.82 |
| (60.0, 70.0]   |       65 |     16 |         98 |       0.16 |           0.98 |
| (70.0, 80.0]   |       75 |      2 |        100 |       0.02 |           1    |
| (80.0, 90.0]   |       85 |      0 |        100 |       0    |           1    |
| (90.0, 100.0]  |       95 |      0 |        100 |       0    |           1    |
"""


if __name__ == '__main__':
    main()

data1d_histogram

2次元データ

import matplotlib.pyplot as plt

from arekore import dummy, viz
from arekore.data2d import Data2d, plot_regression_line, plot_scatter


def main():
    # ダミーデータ生成
    x, y = dummy.xy_specified_cor(r=0.8, n=50)

    # 2次元データオブジェクトの作成
    d = Data2d(x=x, y=y)

    # 散布図と回帰直線を描画
    fig, ax = viz.fig_ax(figsize=(8, 6))
    plot_scatter(ax, d)
    plot_regression_line(ax, d)

    plt.show()


if __name__ == '__main__':
    main()

data2d_scatter_and_regresson_line

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

arekore-0.2.0.tar.gz (6.7 kB view details)

Uploaded Source

Built Distribution

arekore-0.2.0-py3-none-any.whl (7.7 kB view details)

Uploaded Python 3

File details

Details for the file arekore-0.2.0.tar.gz.

File metadata

  • Download URL: arekore-0.2.0.tar.gz
  • Upload date:
  • Size: 6.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.13 CPython/3.9.13 Darwin/21.6.0

File hashes

Hashes for arekore-0.2.0.tar.gz
Algorithm Hash digest
SHA256 0f10409a797a9772eb8d0630a9519e983500394f4ca813ed51324998a62468b0
MD5 0ae0dca47747fc0b454a92e3eee5e584
BLAKE2b-256 a6a9a618835c64b82650bbab6251be305f3af9c69c942a8e3c065262c2b0a4d9

See more details on using hashes here.

File details

Details for the file arekore-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: arekore-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 7.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.13 CPython/3.9.13 Darwin/21.6.0

File hashes

Hashes for arekore-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 6b74928f6a57c63337892a72d5f1aaaf96bd37e4c464bc464f2445c96bd008bc
MD5 441b59e73d1ee46081ae82fddb0dcb9b
BLAKE2b-256 34547e96dc96fb72292f84700b80e05b080afa352182efaa5cfa21e9539ed103

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page