Skip to main content

Ranking the risk of antibiotic resistance for metagenomes

Project description

# arg_ranker

## Install
pip install arg_ranker

conda install -c caozhichongchong arg_ranker

## Test (any of these two commands)
`arg_ranker -i example/ARGprofile_example_1.txt -m example/metadata.txt`\
`arg_ranker -i example/ARGprofile_example_2.txt -m example/metadata.txt`

## Availability\

## How to use it
### Prepare your ARG profile

arg_ranker is suitable for the units of ppm, gene copy per 16S or gene copy per cell

#### Option 1: Run your own pipeline against our database

1. Download the ARGs-OAP v1.0 database\*

2. Format your results into example/ARGprofile_example_1.txt or example/ARGprofile_example_2.txt

#### Option 2: Run ARGs-OAP v1.0 and format the results by ARG_Ranker

1. Download ARGs-OAP v1.0 pipeline and run the pipeline\\

A brief introduction on how to use ARGs-OAP v1.0\
Please refer to the of ARGs-OAP v1.0 for more details

Prepare your metadata for your samples into example/metadata.txt (separated by tab)\
SampleID (a number for the sample) | Name (metagenomic samples name) | Category (metadata of habitat, or group)\
`./ublastx_stage_one -i inputfqs -o testoutdir -m meta-data.txt -n 2`

Usage: ./ublastx_stage_one -i <Fq input dir> -m <Metadata_map.txt> -o <output dir>
-n [number of threads] -f [fa|fq] -z -h -c
-i Input files directory, required\
-m meta data file, required
-o Output files directory, default current directory
-n number of threads used for usearch, default 1
-f the format of processed files, default fq
-z whether the fq files were .gz format, if -z, then firstly gzip -d, default(none)
-c This option fulfill copy number correction by Copywriter database to transfrom 16S information into cell number [ direct searching hyper variable region database by usearch; default 1]
-h print this help information

2. Check the "extracted.fa.blast6out.txt" and "meta_data_online.txt" in the output_dir

3. Run\
`arg_ranker -f True -fo output_dir`\
`arg_ranker -i -m metadata.txt`

### Prepare your metadata for your samples (optional)

Format your metadata of metagenomic samples into example/metadata.txt (not necessarily the same)\
First column matches the sample ID in your ARG profile;\
Other columns contain the metadata of your samples (such as habitat/eco-type, accession number, group...)

## Introduction evaluates and assigns the risk and priority levels to environmental samples
based on their profile of antibiotic resistant genes (ARGs).

Requirement: python packages (pandas, argparse)

Requirement: a mothertable of the ARG abundance in all your samples
annotated by ARGs-OAP v1.0 (see example/All_sample_cellnumber.txt).

Optimal: a table of the metadata of your samples (see example/All_sample_metadata.txt).

## Copyright
Copyright:An-Ni Zhang, Prof. Tong Zhang, University of Hong Kong
1. This study
2. Yang Y, Jiang X, Chai B, Ma L, Li B, Zhang A, Cole JR, Tiedje JM, Zhang T: ARGs-OAP: online analysis pipeline for antibiotic resistance genes detection from metagenomic data using an integrated structured ARG-database. Bioinformatics 2016. (optional: antibiotic resistance database)

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for arg-ranker, version 1.0.4
Filename, size File type Python version Upload date Hashes
Filename, size arg_ranker-1.0.4.tar.gz (5.3 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page