Pyramid Generator For OMETiff
Project description
Argolid
Build Requirements
Argolid
uses Tensorstore
for reading and writing pixel data. So Tensorstore
build requirements are needed to be satisfied.
For Linux, these are the requirements:
GCC
10 or laterClang
8 or laterPython
3.8 or laterCMake
3.24 or laterPerl
, for building libaom from source (default). Must be inPATH
. Not required if-DTENSORSTORE_USE_SYSTEM_LIBAOM=ON
is specified.NASM
, for building libjpeg-turbo, libaom, and dav1d from source (default). Must be inPATH
.Not required if-DTENSORSTORE_USE_SYSTEM_{JPEG,LIBAOM,DAV1D}=ON
is specified.GNU Patch
or equivalent. Must be inPATH
.
Building and Installing
Here is an example of building and installing Argolid
in a Python virtual environment.
python -m virtualenv venv
source venv/bin/activate
pip install cmake
git clone --recurse-submodules https://github.com/sameeul/argolid.git
cd argolid
python setup.py install
Usage
Argolid can generate Pyramids from a single image or an image collection with a stitching vector provided. It can generate three different kind of pyramids:
- Neuroglancer compatible Zarr (NG_Zarr)
- Precomputed Neuroglancer (PCNG)
- Viv compatible Zarr (Viv)
Currently, three downsampling methods (mean
, mode_max
and mode_min
) are supported. A dictionary with channel id (integer) as key and downsampling method as value can be passed to specify downsampling method for specific channel. If a channel does not exist as a key in the
dictionary, mean
will be used as the default downsampling method
Here is an example of generating a pyramid from a single image.
from argolid import PyramidGenerartor
input_file = "/home/samee/axle/data/test_image.ome.tif"
output_dir = "/home/samee/axle/data/test_image_ome_zarr"
min_dim = 1024
pyr_gen = PyramidGenerartor()
pyr_gen.generate_from_single_image(input_file, output_dir, min_dim, "NG_Zarr", {0:"mode_max"})
Here is an example of generating a pyramid from a collection of images and a stitching vector.
from argolid import PyramidGenerartor
input_dir = "/home/samee/axle/data/intensity1"
file_pattern = "x{x:d}_y{y:d}_c{c:d}.ome.tiff"
output_dir = "/home/samee/axle/data/test_assembly_out"
image_name = "test_image"
min_dim = 1024
pyr_gen = PyramidGenerartor()
pyr_gen.generate_from_image_collection(input_dir, file_pattern, image_name,
output_dir, min_dim, "Viv", {1:"mean"})
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
File details
Details for the file argolid-0.0.5-cp311-cp311-win_amd64.whl
.
File metadata
- Download URL: argolid-0.0.5-cp311-cp311-win_amd64.whl
- Upload date:
- Size: 11.3 MB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 02712359173418215c55e14bbe6304e2a24d7c73379150bb2512924cf1125b4b |
|
MD5 | 9bde384a1e47c8ec98c25a6241265881 |
|
BLAKE2b-256 | b66ef0ed8a9a5b6acf7e0867e464c4f2bb69ca77301288bdad94e75b3d55786d |
File details
Details for the file argolid-0.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: argolid-0.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 14.3 MB
- Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2891cfac15573e89ac8e206ccc8ad9326ee5c6734ad48109a3fc82179a839996 |
|
MD5 | a33c9568d5a9a31a4d89153913994a49 |
|
BLAKE2b-256 | 294df62bae91906c6faf0ffd88294cad6b253ad4f9abe483a6ef54ae0ab49cd4 |
File details
Details for the file argolid-0.0.5-cp311-cp311-macosx_11_0_arm64.whl
.
File metadata
- Download URL: argolid-0.0.5-cp311-cp311-macosx_11_0_arm64.whl
- Upload date:
- Size: 10.8 MB
- Tags: CPython 3.11, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.11.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f22ce01b27f1fdacfcfa0ecfe3058e73b8e4fe369422fbb6341e324d441bda5a |
|
MD5 | e4b07694acd4c955cb1f8241aa959bcd |
|
BLAKE2b-256 | cbe4c3a92a61290ae41833cb73907ef442d67fe7697840b71ae0de58f275f22b |
File details
Details for the file argolid-0.0.5-cp311-cp311-macosx_10_15_x86_64.whl
.
File metadata
- Download URL: argolid-0.0.5-cp311-cp311-macosx_10_15_x86_64.whl
- Upload date:
- Size: 13.2 MB
- Tags: CPython 3.11, macOS 10.15+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1d07e618d0697f625df1ed579cc2ab8e1f5bb16b45ab4322712842134620aea0 |
|
MD5 | caefa34782220b9a9567ecae821fa20d |
|
BLAKE2b-256 | 4f8935bf1835220e07eda1e32b000c9e9531157aea199ca1c8727e287ab1709a |
File details
Details for the file argolid-0.0.5-cp310-cp310-win_amd64.whl
.
File metadata
- Download URL: argolid-0.0.5-cp310-cp310-win_amd64.whl
- Upload date:
- Size: 11.3 MB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e40c2db43b70a366939e530bf57167aadabdb73d43fabf94b009a34f3ba561bf |
|
MD5 | db2746c73fd6ff60964ca27d6f79d15e |
|
BLAKE2b-256 | bdb20510390d7306417a88c299c14b0ce4f3f21c41c3761183018f4f41f16a05 |
File details
Details for the file argolid-0.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: argolid-0.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 14.3 MB
- Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b879de67bf22459320f5f940d5fdc3d4b340fd0c47918d33f35747c531b5da72 |
|
MD5 | 45de22ddf624b1415f602954e7fb5a9a |
|
BLAKE2b-256 | 50d8bb4c866e5ebcea079a1580b3ac0b094ae8918386f8072d397d232d863f13 |
File details
Details for the file argolid-0.0.5-cp310-cp310-macosx_11_0_arm64.whl
.
File metadata
- Download URL: argolid-0.0.5-cp310-cp310-macosx_11_0_arm64.whl
- Upload date:
- Size: 10.8 MB
- Tags: CPython 3.10, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.11.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5750bc3990e054c5ad634a21534ed2aedd07d0585ba8b2e557139354d03e2787 |
|
MD5 | fb47ea463afc93ca0462f9f32931c05f |
|
BLAKE2b-256 | 82effeb3699e959c9572b22d05d4a6509ff302d37abfa1755b392717aea941e8 |
File details
Details for the file argolid-0.0.5-cp310-cp310-macosx_10_15_x86_64.whl
.
File metadata
- Download URL: argolid-0.0.5-cp310-cp310-macosx_10_15_x86_64.whl
- Upload date:
- Size: 13.2 MB
- Tags: CPython 3.10, macOS 10.15+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 54296cfc7d0ed32b79aebdb287488fb0260fee2e39fd03ac2b53e81269f3f8dc |
|
MD5 | f42268cfb72625ae104b834b3939ac0b |
|
BLAKE2b-256 | 4ad9585c0a2019630e6d0393fd8c1b737e59e7e2e4a65a1ae6eb327d5346c33c |
File details
Details for the file argolid-0.0.5-cp39-cp39-win_amd64.whl
.
File metadata
- Download URL: argolid-0.0.5-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 11.3 MB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 06de60f05ab36ddf077d18b77051a02097d56294930086b961fced6902d2f320 |
|
MD5 | 37dcf50f562b4d34edd8baf99c607b3f |
|
BLAKE2b-256 | 3df9255a40681000ceabd826859d601423982f68ab72229c4e5f3a7ebe756eb9 |
File details
Details for the file argolid-0.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: argolid-0.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 14.3 MB
- Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 94c2c4949f24daf3da73583c812be49605957e4fbc27badddf5e6e01d9532f62 |
|
MD5 | ea320b19c67444edcea6213968467fdf |
|
BLAKE2b-256 | 0d916b0ee444ab1da80e20931131dd5a817edbab371c497c8c72a1d710c248c4 |
File details
Details for the file argolid-0.0.5-cp39-cp39-macosx_11_0_arm64.whl
.
File metadata
- Download URL: argolid-0.0.5-cp39-cp39-macosx_11_0_arm64.whl
- Upload date:
- Size: 10.8 MB
- Tags: CPython 3.9, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.11.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 809caab50854cda250dee27f5ed707f7769db8a0c362bc7134fe08a5112a3f76 |
|
MD5 | a4c73da5d10226aec57a3abaac04da15 |
|
BLAKE2b-256 | 9b66c9c7e7ce422c9f2017a96649bec584d53fb1d86b2aaa7a8f37934b6358d5 |
File details
Details for the file argolid-0.0.5-cp39-cp39-macosx_10_15_x86_64.whl
.
File metadata
- Download URL: argolid-0.0.5-cp39-cp39-macosx_10_15_x86_64.whl
- Upload date:
- Size: 13.2 MB
- Tags: CPython 3.9, macOS 10.15+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8aa4a5be8cc5d14f313f288500ba57f89dd0e6d566963bf4393daf53b2a3071f |
|
MD5 | a91e709903c7da9ce12422952fdfaeb2 |
|
BLAKE2b-256 | 50f6ed6c3aec77710b6fcb7da492eda63a8cae52aad4bac6d6c216440c72dcd9 |
File details
Details for the file argolid-0.0.5-cp38-cp38-win_amd64.whl
.
File metadata
- Download URL: argolid-0.0.5-cp38-cp38-win_amd64.whl
- Upload date:
- Size: 11.3 MB
- Tags: CPython 3.8, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 13b56ec6919f59e05104203c967d52d139ef1f7fb7d0ccfc26b6629d3b1dcffb |
|
MD5 | dd7fbab1b9cf90d99bbda2b030376bac |
|
BLAKE2b-256 | 33375020ae41e8b7c136918adc9ac55afc4bb60b0c1502548061a2c5e384c83d |
File details
Details for the file argolid-0.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: argolid-0.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 14.3 MB
- Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6e2e9ad739e88f0d7bbdec96f8314f6c1b853e1a2c6d9c847780e10f4b6d4370 |
|
MD5 | 9d5bdb1e75c6e4b8a17d72edfe8a8dfb |
|
BLAKE2b-256 | ed3867d9bfc6cb0f767976fe9553e85838a2182fb8879abaa7f5ac1b1e9fe62b |
File details
Details for the file argolid-0.0.5-cp38-cp38-macosx_10_15_x86_64.whl
.
File metadata
- Download URL: argolid-0.0.5-cp38-cp38-macosx_10_15_x86_64.whl
- Upload date:
- Size: 13.2 MB
- Tags: CPython 3.8, macOS 10.15+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a0b9a07cf0d8be9af855408e8190bc6d657b88f51798d8d79ae84864b0f305d0 |
|
MD5 | a71e712879d667a3a2458b4318ef53a7 |
|
BLAKE2b-256 | b7f76267de9a441c7e438fa795671a9b7f4b64904e95125063de8dcdbe46bfbf |