Skip to main content

Pyramid Generator For OMETiff

Project description

Argolid

Build Requirements

Argolid uses Tensorstore for reading and writing pixel data. So Tensorstore build requirements are needed to be satisfied. For Linux, these are the requirements:

  • GCC 10 or later
  • Clang 8 or later
  • Python 3.8 or later
  • CMake 3.24 or later
  • Perl, for building libaom from source (default). Must be in PATH. Not required if -DTENSORSTORE_USE_SYSTEM_LIBAOM=ON is specified.
  • NASM, for building libjpeg-turbo, libaom, and dav1d from source (default). Must be in PATH.Not required if -DTENSORSTORE_USE_SYSTEM_{JPEG,LIBAOM,DAV1D}=ON is specified.
  • GNU Patch or equivalent. Must be in PATH.

Building and Installing

Here is an example of building and installing Argolid in a Python virtual environment.

python -m virtualenv venv
source venv/bin/activate
pip install cmake
git clone --recurse-submodules https://github.com/sameeul/argolid.git 
cd argolid
python setup.py install

Usage

Argolid can generate Pyramids from a single image or an image collection with a stitching vector provided. It can generate three different kind of pyramids:

  • Neuroglancer compatible Zarr (NG_Zarr)
  • Precomputed Neuroglancer (PCNG)
  • Viv compatible Zarr (Viv)

Currently, three downsampling methods (mean, mode_max and mode_min) are supported. A dictionary with channel id (integer) as key and downsampling method as value can be passed to specify downsampling method for specific channel. If a channel does not exist as a key in the dictionary, mean will be used as the default downsampling method

Here is an example of generating a pyramid from a single image.

from argolid import PyramidGenerartor
input_file = "/home/samee/axle/data/test_image.ome.tif"
output_dir = "/home/samee/axle/data/test_image_ome_zarr"
min_dim = 1024
pyr_gen = PyramidGenerartor()
pyr_gen.generate_from_single_image(input_file, output_dir, min_dim, "NG_Zarr", {0:"mode_max"})

Here is an example of generating a pyramid from a collection of images and a stitching vector.

from argolid import PyramidGenerartor
input_dir = "/home/samee/axle/data/intensity1"
file_pattern = "x{x:d}_y{y:d}_c{c:d}.ome.tiff"
output_dir = "/home/samee/axle/data/test_assembly_out"
image_name = "test_image"
min_dim = 1024
pyr_gen = PyramidGenerartor()
pyr_gen.generate_from_image_collection(input_dir, file_pattern, image_name, 
                                        output_dir, min_dim, "Viv", {1:"mean"})

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

argolid-0.0.5-cp311-cp311-win_amd64.whl (11.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

argolid-0.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

argolid-0.0.5-cp311-cp311-macosx_11_0_arm64.whl (10.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

argolid-0.0.5-cp311-cp311-macosx_10_15_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

argolid-0.0.5-cp310-cp310-win_amd64.whl (11.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

argolid-0.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

argolid-0.0.5-cp310-cp310-macosx_11_0_arm64.whl (10.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

argolid-0.0.5-cp310-cp310-macosx_10_15_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

argolid-0.0.5-cp39-cp39-win_amd64.whl (11.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

argolid-0.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

argolid-0.0.5-cp39-cp39-macosx_11_0_arm64.whl (10.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

argolid-0.0.5-cp39-cp39-macosx_10_15_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

argolid-0.0.5-cp38-cp38-win_amd64.whl (11.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

argolid-0.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

argolid-0.0.5-cp38-cp38-macosx_10_15_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file argolid-0.0.5-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: argolid-0.0.5-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 11.3 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for argolid-0.0.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 02712359173418215c55e14bbe6304e2a24d7c73379150bb2512924cf1125b4b
MD5 9bde384a1e47c8ec98c25a6241265881
BLAKE2b-256 b66ef0ed8a9a5b6acf7e0867e464c4f2bb69ca77301288bdad94e75b3d55786d

See more details on using hashes here.

File details

Details for the file argolid-0.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for argolid-0.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2891cfac15573e89ac8e206ccc8ad9326ee5c6734ad48109a3fc82179a839996
MD5 a33c9568d5a9a31a4d89153913994a49
BLAKE2b-256 294df62bae91906c6faf0ffd88294cad6b253ad4f9abe483a6ef54ae0ab49cd4

See more details on using hashes here.

File details

Details for the file argolid-0.0.5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for argolid-0.0.5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f22ce01b27f1fdacfcfa0ecfe3058e73b8e4fe369422fbb6341e324d441bda5a
MD5 e4b07694acd4c955cb1f8241aa959bcd
BLAKE2b-256 cbe4c3a92a61290ae41833cb73907ef442d67fe7697840b71ae0de58f275f22b

See more details on using hashes here.

File details

Details for the file argolid-0.0.5-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for argolid-0.0.5-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 1d07e618d0697f625df1ed579cc2ab8e1f5bb16b45ab4322712842134620aea0
MD5 caefa34782220b9a9567ecae821fa20d
BLAKE2b-256 4f8935bf1835220e07eda1e32b000c9e9531157aea199ca1c8727e287ab1709a

See more details on using hashes here.

File details

Details for the file argolid-0.0.5-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: argolid-0.0.5-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 11.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for argolid-0.0.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e40c2db43b70a366939e530bf57167aadabdb73d43fabf94b009a34f3ba561bf
MD5 db2746c73fd6ff60964ca27d6f79d15e
BLAKE2b-256 bdb20510390d7306417a88c299c14b0ce4f3f21c41c3761183018f4f41f16a05

See more details on using hashes here.

File details

Details for the file argolid-0.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for argolid-0.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b879de67bf22459320f5f940d5fdc3d4b340fd0c47918d33f35747c531b5da72
MD5 45de22ddf624b1415f602954e7fb5a9a
BLAKE2b-256 50d8bb4c866e5ebcea079a1580b3ac0b094ae8918386f8072d397d232d863f13

See more details on using hashes here.

File details

Details for the file argolid-0.0.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for argolid-0.0.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5750bc3990e054c5ad634a21534ed2aedd07d0585ba8b2e557139354d03e2787
MD5 fb47ea463afc93ca0462f9f32931c05f
BLAKE2b-256 82effeb3699e959c9572b22d05d4a6509ff302d37abfa1755b392717aea941e8

See more details on using hashes here.

File details

Details for the file argolid-0.0.5-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for argolid-0.0.5-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 54296cfc7d0ed32b79aebdb287488fb0260fee2e39fd03ac2b53e81269f3f8dc
MD5 f42268cfb72625ae104b834b3939ac0b
BLAKE2b-256 4ad9585c0a2019630e6d0393fd8c1b737e59e7e2e4a65a1ae6eb327d5346c33c

See more details on using hashes here.

File details

Details for the file argolid-0.0.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: argolid-0.0.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 11.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for argolid-0.0.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 06de60f05ab36ddf077d18b77051a02097d56294930086b961fced6902d2f320
MD5 37dcf50f562b4d34edd8baf99c607b3f
BLAKE2b-256 3df9255a40681000ceabd826859d601423982f68ab72229c4e5f3a7ebe756eb9

See more details on using hashes here.

File details

Details for the file argolid-0.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for argolid-0.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 94c2c4949f24daf3da73583c812be49605957e4fbc27badddf5e6e01d9532f62
MD5 ea320b19c67444edcea6213968467fdf
BLAKE2b-256 0d916b0ee444ab1da80e20931131dd5a817edbab371c497c8c72a1d710c248c4

See more details on using hashes here.

File details

Details for the file argolid-0.0.5-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for argolid-0.0.5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 809caab50854cda250dee27f5ed707f7769db8a0c362bc7134fe08a5112a3f76
MD5 a4c73da5d10226aec57a3abaac04da15
BLAKE2b-256 9b66c9c7e7ce422c9f2017a96649bec584d53fb1d86b2aaa7a8f37934b6358d5

See more details on using hashes here.

File details

Details for the file argolid-0.0.5-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for argolid-0.0.5-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 8aa4a5be8cc5d14f313f288500ba57f89dd0e6d566963bf4393daf53b2a3071f
MD5 a91e709903c7da9ce12422952fdfaeb2
BLAKE2b-256 50f6ed6c3aec77710b6fcb7da492eda63a8cae52aad4bac6d6c216440c72dcd9

See more details on using hashes here.

File details

Details for the file argolid-0.0.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: argolid-0.0.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 11.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for argolid-0.0.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 13b56ec6919f59e05104203c967d52d139ef1f7fb7d0ccfc26b6629d3b1dcffb
MD5 dd7fbab1b9cf90d99bbda2b030376bac
BLAKE2b-256 33375020ae41e8b7c136918adc9ac55afc4bb60b0c1502548061a2c5e384c83d

See more details on using hashes here.

File details

Details for the file argolid-0.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for argolid-0.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6e2e9ad739e88f0d7bbdec96f8314f6c1b853e1a2c6d9c847780e10f4b6d4370
MD5 9d5bdb1e75c6e4b8a17d72edfe8a8dfb
BLAKE2b-256 ed3867d9bfc6cb0f767976fe9553e85838a2182fb8879abaa7f5ac1b1e9fe62b

See more details on using hashes here.

File details

Details for the file argolid-0.0.5-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for argolid-0.0.5-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 a0b9a07cf0d8be9af855408e8190bc6d657b88f51798d8d79ae84864b0f305d0
MD5 a71e712879d667a3a2458b4318ef53a7
BLAKE2b-256 b7f76267de9a441c7e438fa795671a9b7f4b64904e95125063de8dcdbe46bfbf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page