Locate, Download, and Read Argo Ocean Float Data
Project description
argopandas
The goal of argopandas is to provide seamless access to Argo NetCDF files using a pandas DataFrame
-based interface. It is a Python port of the argodata package for R. The package is under heavy development and we would love feedback on the interface or anything else about the package!
Installation
You can install the argopandas
package using pip
.
pip install argopandas
The package depends on pandas
, numpy
, netCDF4
, and pyarrow
, which install automatically if using pip
or you can install also your favourite Python package manager. The argopandas
package requires Python 3.6 or later.
Examples
The intended interface for most usage is contained in the argopandas
module. You can import this as argo
for pretty-looking syntax:
import argopandas as argo
The global indexes are available via argo.prof
, argo.meta
, argo.tech
, argo.traj
, argo.bio_prof
, argo.synthetic_prof
, and argo.bio_traj
.
argo.meta.head(5)
file | profiler_type | institution | date_update | |
---|---|---|---|---|
0 | aoml/13857/13857_meta.nc | 845 | AO | 2018-10-11 20:00:14+00:00 |
1 | aoml/13858/13858_meta.nc | 845 | AO | 2018-10-11 20:00:15+00:00 |
2 | aoml/13859/13859_meta.nc | 845 | AO | 2018-10-11 20:00:25+00:00 |
3 | aoml/15819/15819_meta.nc | 845 | AO | 2018-10-11 20:00:16+00:00 |
4 | aoml/15820/15820_meta.nc | 845 | AO | 2018-10-11 20:00:18+00:00 |
By defaut, downloads are lazily cached from the Ifremer https mirror. You can use argo.url_mirror()
or argo.file_mirror()
with argo.set_default_mirror()
to point argopandas
at your favourite copy of Argo.
To get Argo data from one or more NetCDF files, subset the indexes and use one of the table accessors to download, cache, and read variables aligned along common dimensions. The accessor you probably want is the .levels
accessor from the argo.prof
index:
argo.prof.head(5).levels[['PRES', 'TEMP']]
Downloading 5 files from 'https://data-argo.ifremer.fr/dac/aoml/13857/profiles'
Reading 5 files
PRES | TEMP | |||
---|---|---|---|---|
file | N_PROF | N_LEVELS | ||
aoml/13857/profiles/R13857_001.nc | 0 | 0 | 11.900000 | 22.235001 |
1 | 17.000000 | 21.987000 | ||
2 | 22.100000 | 21.891001 | ||
3 | 27.200001 | 21.812000 | ||
4 | 32.299999 | 21.632000 | ||
... | ... | ... | ... | ... |
aoml/13857/profiles/R13857_005.nc | 0 | 102 | 976.500000 | 4.527000 |
103 | 986.700012 | 4.527000 | ||
104 | 996.799988 | 4.533000 | ||
105 | 1007.000000 | 4.487000 | ||
106 | 1017.200012 | 4.471000 |
551 rows × 2 columns
You can get data from every variable in an Argo NetCDF file using one of these accessors. The variables grouped in each are aligned along the same dimensions and are documented together in the Argo user's manual.
- All indexes have a
.info
accessor that contains length-one variables that aren't aligned along any dimensions argo.prof
:argo.prof.levels
,arog.prof.prof
,argo.prof.calib
,argo.prof.param
, andargo.prof.history
argo.traj
:argo.traj.cycle
,argo.traj.measurement
,argo.traj.param
, andargo.traj.history
argo.tech
:argo.tech.tech_param
argo.meta
:argo.meta.config_param
,argo.meta.missions
,argo.meta.trans_system
,argo.meta.positioning_system
,argo.meta.launch_config_param
,argo.meta.sensor
, andargo.meta.param
Once you have a data frame you do anything you'd do with a regular pd.DataFrame()
, like plot your data using the built-in plot method:
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
for label, df in argo.prof.head(5).levels.groupby('file'):
df.plot(x='TEMP', y = 'PRES', ax=ax, label=label)
ax.invert_yaxis()
Reading 5 files
You can access all the index files for a particular float using argo.float()
, which lazily filters all the indexes for a particular float ID.
float_obj = argo.float(13857)
float_obj.meta.info
Downloading 'https://data-argo.ifremer.fr/ar_index_global_meta.txt.gz'
Downloading 'https://data-argo.ifremer.fr/dac/aoml/13857/13857_meta.nc'
Reading 1 file
DATA_TYPE | FORMAT_VERSION | HANDBOOK_VERSION | DATE_CREATION | DATE_UPDATE | PLATFORM_NUMBER | PTT | PLATFORM_FAMILY | PLATFORM_TYPE | PLATFORM_MAKER | ... | LAUNCH_QC | START_DATE | START_DATE_QC | STARTUP_DATE | STARTUP_DATE_QC | DEPLOYMENT_PLATFORM | DEPLOYMENT_CRUISE_ID | DEPLOYMENT_REFERENCE_STATION_ID | END_MISSION_DATE | END_MISSION_STATUS | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
file | ||||||||||||||||||||||
aoml/13857/13857_meta.nc | 0 | Argo meta-data | 3.1 | 1.2 | 20181011200014 | 20181011200014 | 13857 | 09335 ... | FLOAT ... | PALACE | WRC ... | ... | b'1' | 19970719163000 | b'1' | 19970719103000 | b'1' | R/V Seward Johnson | 97-03 | CTD 108 ... | NaN |
1 rows × 43 columns
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file argopandas-0.0.5.tar.gz
.
File metadata
- Download URL: argopandas-0.0.5.tar.gz
- Upload date:
- Size: 25.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0507de8ad3db60f9be39ec76ad6a79cb1f07da3a7dd630b34fde995d570a47ad |
|
MD5 | 7254e4470f2a080f207d681466afeae1 |
|
BLAKE2b-256 | 3d4c066f133b54bfd3edce6157841bc9eed6f612f779c0cf2ac62af75e0324fc |
File details
Details for the file argopandas-0.0.5-py3-none-any.whl
.
File metadata
- Download URL: argopandas-0.0.5-py3-none-any.whl
- Upload date:
- Size: 27.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d0a4915676ef11b8e73f23377db6da0bc8415ad72e1fe9b827919b22e3f7b0cb |
|
MD5 | fd7570fb176859026b34d29a466f5488 |
|
BLAKE2b-256 | f68d03635a15ec67876a7a66e9f42927a1fcf8529240bc990c9d474a5e1baaa9 |