Skip to main content

Locate, Download, and Read Argo Ocean Float Data

Project description

argopandas

Check Codecov test coverage argopandas on PyPi Documentation argopandas on GitHub

The goal of argopandas is to provide seamless access to Argo NetCDF files using a pandas DataFrame-based interface. It is a Python port of the argodata package for R. The package is under heavy development and we would love feedback on the interface or anything else about the package!

Installation

You can install the argopandas package using pip.

pip install argopandas

The package depends on pandas, numpy, netCDF4, and pyarrow, which install automatically if using pip or you can install also your favourite Python package manager. The argopandas package requires Python 3.6 or later.

Examples

The intended interface for most usage is contained in the argopandas module. You can import this as argo for pretty-looking syntax:

import argopandas as argo

The global indexes are available via argo.prof, argo.meta, argo.tech, argo.traj, argo.bio_prof, argo.synthetic_prof, and argo.bio_traj.

argo.meta.head(5)
file profiler_type institution date_update
0 aoml/13857/13857_meta.nc 845 AO 2018-10-11 20:00:14+00:00
1 aoml/13858/13858_meta.nc 845 AO 2018-10-11 20:00:15+00:00
2 aoml/13859/13859_meta.nc 845 AO 2018-10-11 20:00:25+00:00
3 aoml/15819/15819_meta.nc 845 AO 2018-10-11 20:00:16+00:00
4 aoml/15820/15820_meta.nc 845 AO 2018-10-11 20:00:18+00:00

By defaut, downloads are lazily cached from the Ifremer https mirror. You can use argo.url_mirror() or argo.file_mirror() with argo.set_default_mirror() to point argopandas at your favourite copy of Argo.

To get Argo data from one or more NetCDF files, subset the indexes and use one of the table accessors to download, cache, and read variables aligned along common dimensions. The accessor you probably want is the .levels accessor from the argo.prof index:

argo.prof.head(5).levels[['PRES', 'TEMP']]
Downloading 5 files from 'https://data-argo.ifremer.fr/dac/aoml/13857/profiles'
Reading 5 files
PRES TEMP
file N_PROF N_LEVELS
aoml/13857/profiles/R13857_001.nc 0 0 11.900000 22.235001
1 17.000000 21.987000
2 22.100000 21.891001
3 27.200001 21.812000
4 32.299999 21.632000
... ... ... ... ...
aoml/13857/profiles/R13857_005.nc 0 102 976.500000 4.527000
103 986.700012 4.527000
104 996.799988 4.533000
105 1007.000000 4.487000
106 1017.200012 4.471000

551 rows × 2 columns

You can get data from every variable in an Argo NetCDF file using one of these accessors. The variables grouped in each are aligned along the same dimensions and are documented together in the Argo user's manual.

  • All indexes have a .info accessor that contains length-one variables that aren't aligned along any dimensions
  • argo.prof: argo.prof.levels, arog.prof.prof, argo.prof.calib, argo.prof.param, and argo.prof.history
  • argo.traj: argo.traj.cycle, argo.traj.measurement, argo.traj.param, and argo.traj.history
  • argo.tech: argo.tech.tech_param
  • argo.meta: argo.meta.config_param, argo.meta.missions, argo.meta.trans_system, argo.meta.positioning_system, argo.meta.launch_config_param, argo.meta.sensor, and argo.meta.param

Once you have a data frame you do anything you'd do with a regular pd.DataFrame(), like plot your data using the built-in plot method:

import matplotlib.pyplot as plt
fig, ax = plt.subplots()
for label, df in argo.prof.head(5).levels.groupby('file'):
    df.plot(x='TEMP', y = 'PRES', ax=ax, label=label)
ax.invert_yaxis()
Reading 5 files

You can access all the index files for a particular float using argo.float(), which lazily filters all the indexes for a particular float ID.

float_obj = argo.float(13857)
float_obj.meta.info
Downloading 'https://data-argo.ifremer.fr/ar_index_global_meta.txt.gz'
Downloading 'https://data-argo.ifremer.fr/dac/aoml/13857/13857_meta.nc'
Reading 1 file
DATA_TYPE FORMAT_VERSION HANDBOOK_VERSION DATE_CREATION DATE_UPDATE PLATFORM_NUMBER PTT PLATFORM_FAMILY PLATFORM_TYPE PLATFORM_MAKER ... LAUNCH_QC START_DATE START_DATE_QC STARTUP_DATE STARTUP_DATE_QC DEPLOYMENT_PLATFORM DEPLOYMENT_CRUISE_ID DEPLOYMENT_REFERENCE_STATION_ID END_MISSION_DATE END_MISSION_STATUS
file
aoml/13857/13857_meta.nc 0 Argo meta-data 3.1 1.2 20181011200014 20181011200014 13857 09335 ... FLOAT ... PALACE WRC ... ... b'1' 19970719163000 b'1' 19970719103000 b'1' R/V Seward Johnson 97-03 CTD 108 ... NaN

1 rows × 43 columns

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

argopandas-0.0.5.tar.gz (25.5 kB view details)

Uploaded Source

Built Distribution

argopandas-0.0.5-py3-none-any.whl (27.1 kB view details)

Uploaded Python 3

File details

Details for the file argopandas-0.0.5.tar.gz.

File metadata

  • Download URL: argopandas-0.0.5.tar.gz
  • Upload date:
  • Size: 25.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for argopandas-0.0.5.tar.gz
Algorithm Hash digest
SHA256 0507de8ad3db60f9be39ec76ad6a79cb1f07da3a7dd630b34fde995d570a47ad
MD5 7254e4470f2a080f207d681466afeae1
BLAKE2b-256 3d4c066f133b54bfd3edce6157841bc9eed6f612f779c0cf2ac62af75e0324fc

See more details on using hashes here.

File details

Details for the file argopandas-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: argopandas-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 27.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for argopandas-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 d0a4915676ef11b8e73f23377db6da0bc8415ad72e1fe9b827919b22e3f7b0cb
MD5 fd7570fb176859026b34d29a466f5488
BLAKE2b-256 f68d03635a15ec67876a7a66e9f42927a1fcf8529240bc990c9d474a5e1baaa9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page