Skip to main content

A python library for Argo data beginners and experts

Project description

Argo data python library

argopy is a python library that aims to easy Argo data access, visualisation and manipulation for regular users as well as Argo experts and operators.

Several python packages exist: we are currently in the process of merging and structuring these libraries to have a single powerfull tool.

Install

Since this is a library in active development, use direct install from this repo to benefit from the last version:

pip install git+http://github.com/euroargodev/argopy.git

Examples

Examples of data fetching, manipulation and visualisation are available on the erddap examples repository.

You can run and test live example notebooks on Binder (thanks Pangeo) here: badge

Usage

The primary data model used to manipulate Argo data is xarray.

Argo Data Fetcher

API usage:

    from argopy import DataFetcher as ArgoDataFetcher

    argo_loader = ArgoDataFetcher()
    argo_loader = ArgoDataFetcher(backend='erddap')
    argo_loader = ArgoDataFetcher(cachedir='tmp')

    argo_loader.region([-85,-45,10.,20.,0,1000.]).to_xarray()
    argo_loader.region([-85,-45,10.,20.,0,1000.,'2012-01','2014-12']).to_xarray()

    argo_loader.profile(6902746, 34).to_xarray()
    argo_loader.profile(6902746, np.arange(12,45)).to_xarray()
    argo_loader.profile(6902746, [1,12]).to_xarray()

    argo_loader.float(6902746).to_xarray()
    argo_loader.float([6902746, 6902747, 6902757, 6902766]).to_xarray()
    argo_loader.float([6902746, 6902747, 6902757, 6902766], CYC=1).to_xarray()

Devlopment roadmap:

We aim to provide high level helper methods to load Argo data from:

  • Ifremer erddap
  • local copy of the GDAC ftp folder (help wanted)
  • the argovis dataset (help wanted)
  • any other usefull access point to Argo data ?

At this point data are fetched in memory as xarray.DataSet. From there, it is easy to convert it to other formats like a Pandas dataframe:

ds = argo_loader.profile(6902746, 34).to_xarray()
df = ds.to_dataframe()

and to export it to files:

ds = argo_loader.region([-85,-45,10.,20.,0,1000.]).to_xarray()
ds.to_netcdf('my_selection.nc')
# or by profiles:
ds.argo.point2profile().to_netcdf('my_selection.nc')

Argo data manipulation with xarray

The argopy library provides an xarray accessor named argo to help manipulate and analyse data.

Example: Convert a collection of points to a collections of profiles:

from argopy import DataFetcher as ArgoDataFetcher
ds = ArgoDataFetcher(ds='bgc').float(5903248).to_xarray()
ds = ds.argo.point2profile()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

argopy-0.1.0.tar.gz (15.8 kB view details)

Uploaded Source

Built Distributions

argopy-0.1.0-py3.6.egg (17.9 kB view details)

Uploaded Source

argopy-0.1.0-py3-none-any.whl (19.0 kB view details)

Uploaded Python 3

File details

Details for the file argopy-0.1.0.tar.gz.

File metadata

  • Download URL: argopy-0.1.0.tar.gz
  • Upload date:
  • Size: 15.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0.post20200106 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.6.7

File hashes

Hashes for argopy-0.1.0.tar.gz
Algorithm Hash digest
SHA256 cc8c29a451c6f643d51979cf68ec98d611f359e7c000040636f5f635406b1235
MD5 623e98d44a4008191e295b72aa635309
BLAKE2b-256 5faf7ac2272680532168f63df13b295f7fae5bc42adaeb89211c2924c57da7aa

See more details on using hashes here.

File details

Details for the file argopy-0.1.0-py3.6.egg.

File metadata

  • Download URL: argopy-0.1.0-py3.6.egg
  • Upload date:
  • Size: 17.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0.post20200106 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.6.7

File hashes

Hashes for argopy-0.1.0-py3.6.egg
Algorithm Hash digest
SHA256 047360d46d09adc2748342f7218fac63393eb37cd44a6c9ff069a40219bd53ea
MD5 bf581aa896122630694ac86e2ec3b2c5
BLAKE2b-256 418c249ef79b6c352cd7bf8964452cd82d4c2a8c04d198180d69ba114f78880a

See more details on using hashes here.

File details

Details for the file argopy-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: argopy-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 19.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0.post20200106 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.6.7

File hashes

Hashes for argopy-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 83cc3fc23c94022e3fb38615fe762178b89c637cf651da8d5311994366ce8b12
MD5 e0834573b5e769a5ddb67ae7b420a56d
BLAKE2b-256 6e5bbb15efe6a6f0e041ab8b4ceae163598e60e5f175805365579fc48c1005a0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page