Skip to main content

A python library for Argo data beginners and experts

Project description

argopy logo Argo data python library

Documentation Status Github Action Status codecov Requirements Status Gitter

Profile count

argopy is a python library that aims to ease Argo data access, visualisation and manipulation for regular users as well as Argo experts and operators.

Several python packages exist: we are currently in the process of analysing how to merge these libraries toward a single powerfull tool.
List your tool here !

Click here to badge and play with argopy before you even install it (thanks Pangeo).

Install

Install the last release with pip:

pip install argopy

But since this is a young library in active development, use direct install from this repo to benefit from the lastest version:

pip install git+http://github.com/euroargodev/argopy.git@master

The argopy library should work under all OS (Linux, Mac and Windows) and with python versions 3.6, 3.7 and 3.8.

Usage

Fetching Argo Data

Init the default data fetcher like:

from argopy import DataFetcher as ArgoDataFetcher
argo_loader = ArgoDataFetcher()

and then, request data for a specific space/time domain:

ds = argo_loader.region([-85,-45,10.,20.,0,10.]).to_xarray()
ds = argo_loader.region([-85,-45,10.,20.,0,1000.,'2012-01','2012-12']).to_xarray()

for profiles of a given float:

ds = argo_loader.profile(6902746, 34).to_xarray()
ds = argo_loader.profile(6902746, np.arange(12,45)).to_xarray()
ds = argo_loader.profile(6902746, [1,12]).to_xarray()

or for one or a collection of floats:

ds = argo_loader.float(6902746).to_xarray()
ds = argo_loader.float([6902746, 6902747, 6902757, 6902766]).to_xarray()

By default fetched data are returned in memory as xarray.DataSet. From there, it is easy to convert it to other formats like a Pandas dataframe:

ds = ArgoDataFetcher().profile(6902746, 34).to_xarray()
df = ds.to_dataframe()

or to export it to files:

ds = argo_loader.region([-85,-45,10.,20.,0,100.]).to_xarray()
ds.to_netcdf('my_selection.nc')
# or by profiles:
ds.argo.point2profile().to_netcdf('my_selection.nc')

Argo Index Fetcher

Index object is returned as a pandas dataframe.

Init the fetcher:

    from argopy import IndexFetcher as ArgoIndexFetcher

    index_loader = ArgoIndexFetcher()
    index_loader = ArgoIndexFetcher(backend='erddap')    
    #Local ftp backend 
    #index_loader = ArgoIndexFetcher(backend='localftp',path_ftp='/path/to/your/argo/ftp/',index_file='ar_index_global_prof.txt')

and then, set the index request index for a domain:

    idx=index_loader.region([-85,-45,10.,20.])
    idx=index_loader.region([-85,-45,10.,20.,'2012-01','2014-12'])

or for a collection of floats:

    idx=index_loader.float(6902746)
    idx=index_loader.float([6902746, 6902747, 6902757, 6902766])   

then you can see you index as a pandas dataframe or a xarray dataset :

    idx.to_dataframe()
    idx.to_xarray()

For plottings methods, you'll need matplotlib, cartopy and seaborn installed (they're not in requirements).
For plotting the map of your query :

    idx.plot('trajectory)    

index_traj

For plotting the distribution of DAC or profiler type of the indexed profiles :

    idx.plot('dac')    
    idx.plot('profiler')`

dac

Development roadmap

We aim to provide high level helper methods to load Argo data and meta-data from:

  • Ifremer erddap
  • local copy of the GDAC ftp folder
  • Index files
  • any other usefull access point to Argo data ?

We also aim to provide high level helper methods to visualise and plot Argo data and meta-data:

  • Map with trajectories
  • Waterfall plots
  • T/S diagram
  • etc !

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

argopy-0.1.4.tar.gz (149.8 kB view details)

Uploaded Source

Built Distribution

argopy-0.1.4-py3-none-any.whl (69.2 kB view details)

Uploaded Python 3

File details

Details for the file argopy-0.1.4.tar.gz.

File metadata

  • Download URL: argopy-0.1.4.tar.gz
  • Upload date:
  • Size: 149.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.6.10

File hashes

Hashes for argopy-0.1.4.tar.gz
Algorithm Hash digest
SHA256 855901fc5b47ae0ea45fe474fc711c711a786d1074c287644d9a6f2342dfae7f
MD5 753176aaf1a6e4262ca5736c26e28147
BLAKE2b-256 47ef3ff417bdcd15edc377e0a0ec538d74ae30e8772e4369f5ff3a532273ca50

See more details on using hashes here.

File details

Details for the file argopy-0.1.4-py3-none-any.whl.

File metadata

  • Download URL: argopy-0.1.4-py3-none-any.whl
  • Upload date:
  • Size: 69.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.6.10

File hashes

Hashes for argopy-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 544f51e8415cc2665809078bf7cf9e137eb7f0778939b55b8c4f710ee31a4765
MD5 9da18ec333fae5668827f642af8f2ea2
BLAKE2b-256 fd684d5db676a46ed9e11921e531d722e9063188ae9094fa7bfb658a4024c0b7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page