Skip to main content

A python library for Argo data beginners and experts

Project description

argopy logo

Argo data python library

Github Action Status codecov Requirements Status PyPI

Documentation Status Gitter JOSS

argopy is a python library that aims to ease Argo data access, visualisation and manipulation for regular users as well as Argo experts and operators. Documentation is at https://argopy.readthedocs.io/en/latest/

Several python packages exist: we continuously try to build on these libraries to provide you with a single powerfull tool. List your tool here !

Data and access point status

Profile count

Erddap status

Argovis status

By default, argopy relies on online services to fetch data, you can check web API services status here.

Install

Install the last release with pip:

pip install argopy

But since this is a young library in active development, use direct install from this repo to benefit from the lastest version:

pip install git+http://github.com/euroargodev/argopy.git@master

The argopy library should work under all OS (Linux, Mac and Windows) and with python versions 3.6, 3.7 and 3.8.

Usage

badge

Fetching Argo Data

Init the default data fetcher like:

from argopy import DataFetcher as ArgoDataFetcher
argo_loader = ArgoDataFetcher()

and then, request data for a specific space/time domain:

ds = argo_loader.region([-85,-45,10.,20.,0,10.]).to_xarray()
ds = argo_loader.region([-85,-45,10.,20.,0,1000.,'2012-01','2012-12']).to_xarray()

for profiles of a given float:

ds = argo_loader.profile(6902746, 34).to_xarray()
ds = argo_loader.profile(6902746, np.arange(12,45)).to_xarray()
ds = argo_loader.profile(6902746, [1,12]).to_xarray()

or for one or a collection of floats:

ds = argo_loader.float(6902746).to_xarray()
ds = argo_loader.float([6902746, 6902747, 6902757, 6902766]).to_xarray()

By default fetched data are returned in memory as xarray.DataSet. From there, it is easy to convert it to other formats like a Pandas dataframe:

ds = ArgoDataFetcher().profile(6902746, 34).to_xarray()
df = ds.to_dataframe()

or to export it to files:

ds = argo_loader.region([-85,-45,10.,20.,0,100.]).to_xarray()
ds.to_netcdf('my_selection.nc')
# or by profiles:
ds.argo.point2profile().to_netcdf('my_selection.nc')

Argo Index Fetcher

Index object is returned as a pandas dataframe.

Init the fetcher:

    from argopy import IndexFetcher as ArgoIndexFetcher

    index_loader = ArgoIndexFetcher()
    index_loader = ArgoIndexFetcher(backend='erddap')    
    #Local ftp backend 
    #index_loader = ArgoIndexFetcher(backend='localftp',path_ftp='/path/to/your/argo/ftp/',index_file='ar_index_global_prof.txt')

and then, set the index request index for a domain:

    idx=index_loader.region([-85,-45,10.,20.])
    idx=index_loader.region([-85,-45,10.,20.,'2012-01','2014-12'])

or for a collection of floats:

    idx=index_loader.float(6902746)
    idx=index_loader.float([6902746, 6902747, 6902757, 6902766])   

then you can see you index as a pandas dataframe or a xarray dataset :

    idx.to_dataframe()
    idx.to_xarray()

For plottings methods, you'll need matplotlib, cartopy and seaborn installed (they're not in requirements).
For plotting the map of your query :

    idx.plot('trajectory)    

index_traj

For plotting the distribution of DAC or profiler type of the indexed profiles :

    idx.plot('dac')    
    idx.plot('profiler')`

dac

Development roadmap

Our next big steps:

  • To provide Bio-geochemical variables

We aim to provide high level helper methods to load Argo data and meta-data from:

  • Ifremer erddap
  • local copy of the GDAC ftp folder
  • Index files (local and online)
  • Argovis
  • Online GDAC ftp
  • any other useful access point to Argo data ?

We also aim to provide high level helper methods to visualise and plot Argo data and meta-data:

  • Map with trajectories
  • Waterfall plots
  • T/S diagram
  • etc !

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

argopy-0.1.7.tar.gz (73.0 kB view details)

Uploaded Source

Built Distribution

argopy-0.1.7-py3-none-any.whl (93.2 kB view details)

Uploaded Python 3

File details

Details for the file argopy-0.1.7.tar.gz.

File metadata

  • Download URL: argopy-0.1.7.tar.gz
  • Upload date:
  • Size: 73.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.9.1

File hashes

Hashes for argopy-0.1.7.tar.gz
Algorithm Hash digest
SHA256 88e550e4b6d09c0d7e234274cc40dea4f124103e33f1f306a0b33e64fc5fbe57
MD5 3e86f45e062286cf0f58998d91c28da6
BLAKE2b-256 f2d24f575a937b1873593162a3717120001564ba407f01606874beb892ffb058

See more details on using hashes here.

File details

Details for the file argopy-0.1.7-py3-none-any.whl.

File metadata

  • Download URL: argopy-0.1.7-py3-none-any.whl
  • Upload date:
  • Size: 93.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.9.1

File hashes

Hashes for argopy-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 17dbaa02cbbf4980c48e41a50f4ef7a65ef5d0520d0ff9c69152e593b5cf99e5
MD5 8b3e8b3e322d1de0c53505ce9bb84617
BLAKE2b-256 eda163d05e7a137f474e49d93139befc8f689014bbd02bee108aa3a74d14b6a0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page