A python library for Argo data beginners and experts
Project description
Install
Install the last release with pip:
pip install argopy
But since this is a young library in active development, use direct install from this repo to benefit from the latest version:
pip install git+http://github.com/euroargodev/argopy.git@master
The argopy
library should work under all OS (Linux, Mac and Windows) and with python versions 3.6, 3.7 and 3.8.
Usage
Fetching Argo Data
Init the default data fetcher like:
from argopy import DataFetcher as ArgoDataFetcher
argo_loader = ArgoDataFetcher()
and then, request data for a specific space/time domain:
ds = argo_loader.region([-85,-45,10.,20.,0,10.]).to_xarray()
ds = argo_loader.region([-85,-45,10.,20.,0,1000.,'2012-01','2012-12']).to_xarray()
for profiles of a given float:
ds = argo_loader.profile(6902746, 34).to_xarray()
ds = argo_loader.profile(6902746, np.arange(12,45)).to_xarray()
ds = argo_loader.profile(6902746, [1,12]).to_xarray()
or for one or a collection of floats:
ds = argo_loader.float(6902746).to_xarray()
ds = argo_loader.float([6902746, 6902747, 6902757, 6902766]).to_xarray()
By default fetched data are returned in memory as xarray.DataSet. From there, it is easy to convert it to other formats like a Pandas dataframe:
ds = ArgoDataFetcher().profile(6902746, 34).to_xarray()
df = ds.to_dataframe()
or to export it to files:
ds = argo_loader.region([-85,-45,10.,20.,0,100.]).to_xarray()
ds.to_netcdf('my_selection.nc')
# or by profiles:
ds.argo.point2profile().to_netcdf('my_selection.nc')
Argo Index Fetcher
Index object is returned as a pandas dataframe.
Init the fetcher:
from argopy import IndexFetcher as ArgoIndexFetcher
index_loader = ArgoIndexFetcher()
index_loader = ArgoIndexFetcher(src='erddap')
#Local ftp backend
#index_loader = ArgoIndexFetcher(src='localftp',path_ftp='/path/to/your/argo/ftp/',index_file='ar_index_global_prof.txt')
and then, set the index request index for a domain:
idx=index_loader.region([-85,-45,10.,20.])
idx=index_loader.region([-85,-45,10.,20.,'2012-01','2014-12'])
or for a collection of floats:
idx=index_loader.float(6902746)
idx=index_loader.float([6902746, 6902747, 6902757, 6902766])
then you can see you index as a pandas dataframe or a xarray dataset :
idx.to_dataframe()
idx.to_xarray()
For plottings methods, you'll need matplotlib
, cartopy
and seaborn
installed (they're not in requirements).
For plotting the map of your query :
idx.plot('trajectory')
For plotting the distribution of DAC or profiler type of the indexed profiles :
idx.plot('dac')
idx.plot('profiler')`
Development roadmap
Our next big steps:
- To provide Bio-geochemical variables
We aim to provide high level helper methods to load Argo data and meta-data from:
- Ifremer erddap
- local copy of the GDAC ftp folder
- Index files (local and online)
- Argovis
- Online GDAC ftp
- any other useful access point to Argo data ?
We also aim to provide high level helper methods to visualise and plot Argo data and meta-data:
- Map with trajectories
- Waterfall plots
- T/S diagram
- etc !
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file argopy-0.1.8.tar.gz
.
File metadata
- Download URL: argopy-0.1.8.tar.gz
- Upload date:
- Size: 81.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5af0a2cc0805e3e7c599b3b4e7cded86c39da06eafa0270fb410bf7fa06e08ff |
|
MD5 | b913b229af99a0717f5c15a42118b4b2 |
|
BLAKE2b-256 | f8d92359556fe6174cfcdcff8011edd3334b551a0762d29e36145a80851df001 |
File details
Details for the file argopy-0.1.8-py3-none-any.whl
.
File metadata
- Download URL: argopy-0.1.8-py3-none-any.whl
- Upload date:
- Size: 102.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 86dfffcbb562ddf498061550f291db4c88919c3a68f11e9bcbe59646bd8e1a0e |
|
MD5 | feb3822a2d96c8dad0bf3ed1f8cae3a1 |
|
BLAKE2b-256 | 14d619de50fa97eced3827dbaa7b5981b4f580a3c0acd93a50c1241bf8d47bc9 |