Skip to main content

Downloads pretrained Argus Vision models

Project description

Argus Vision

argusvision package provides easy to use access to image embedding models pretrained on Bing data - Argus Vision models. Interface is based on popular torchvision.

In version 1.0, supported model is Argus Vision V6 - resnext101 32x8d

Please note that provided models are offering image embeddings

Installation

pip install argusvision

For Windows, torch needs to be install from wheel file. Please download the latest torch from here: https://download.pytorch.org/whl/torch_stable.html and then install it using: pip install <.whl file>

Usage

Input images should be in BGR format of shape (3 x H x W), where H and W are expected to be at least 224. The images have to be loaded in to a range of [0, 1] and then normalized using mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225].

Example script:

import argusvision
import torch

# This will load pretrained model
model = argusvision.models.resnext101_32x8d()

# This will initialize weights with default values
model = argusvision.models.resnext101_32x8d(pretrained=False) 

# Load model to CPU memory, interface is the same as torchvision
model = argusvision.resnext101_32x8d(map_location=torch.device('cpu')) 

Example of creating image embeddings:

import argusvision
from torchvision import transforms
import torch
from PIL import Image

def get_image():
    img = cv2.imread('example.jpg', cv2.IMREAD_COLOR)
    img = cv2.resize(img, (256, 256))
    img = img[16:256-16, 16:256-16]
    preprocess = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])
    return preprocess(image).unsqueeze(0) # Unsqueeze only required when there's 1 image in images batch

model = argusvision.models.resnext101_32x8d(map_location=torch.device('cpu'))
features = model(get_image())
print(features.shape)

Should output

...
torch.Size([1, 2048])

Benchmarks

Here are the evaluations of the popular datasets

Model CIFAR-10 STL-10
Torchvision, ResNext101 32x8d 90% 81.1%
Argusvision, ResNext101 32x8d 92.6% 84.2%

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

argusvision-1.1.0.tar.gz (5.6 kB view details)

Uploaded Source

Built Distribution

argusvision-1.1.0-py3-none-any.whl (6.3 kB view details)

Uploaded Python 3

File details

Details for the file argusvision-1.1.0.tar.gz.

File metadata

  • Download URL: argusvision-1.1.0.tar.gz
  • Upload date:
  • Size: 5.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.7

File hashes

Hashes for argusvision-1.1.0.tar.gz
Algorithm Hash digest
SHA256 76244201c24bfa07f3774e2826c1557fe594434bde301c64c0e7138c22e1091b
MD5 0dace4da8d0203fadc53cb04188317e9
BLAKE2b-256 5a16aa69bfb35945d74c8acf90edd5fcb3586b4c3699d676ba5b79a632e44b25

See more details on using hashes here.

File details

Details for the file argusvision-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: argusvision-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 6.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.7

File hashes

Hashes for argusvision-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 22b9782afca5b0a6270a1084512a784ca0fcd2f6ed641f4e77c9a6365a046a71
MD5 938aae940b04cd925d516e700f3abd19
BLAKE2b-256 776c8eb7426be5b2db2631d28fb5387264e83a511254daeb905dbe9c486c1e00

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page