Downloads pretrained Argus Vision models
Project description
Argus Vision
argusvision package provides easy to use access to image embedding models pretrained on Bing data - Argus Vision models. Interface is based on popular torchvision.
In version 1.0, supported model is Argus Vision V6 - resnext101 32x8d
Please note that provided models are offering image embeddings
Installation
pip install argusvision
For Windows, torch needs to be install from wheel file. Please download the latest torch from here: https://download.pytorch.org/whl/torch_stable.html and then install it using: pip install <.whl file>
Usage
Input images should be in BGR format of shape (3 x H x W), where H and W are expected to be at least 224. The images have to be loaded in to a range of [0, 1] and then normalized using mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225].
Example script:
import argusvision
import torch
# This will load pretrained model
model = argusvision.models.resnext101_32x8d()
# This will initialize weights with default values
model = argusvision.models.resnext101_32x8d(pretrained=False)
# Load model to CPU memory, interface is the same as torchvision
model = argusvision.resnext101_32x8d(map_location=torch.device('cpu'))
Example of creating image embeddings:
import argusvision
from torchvision import transforms
import torch
from PIL import Image
def get_image():
img = cv2.imread('example.jpg', cv2.IMREAD_COLOR)
img = cv2.resize(img, (256, 256))
img = img[16:256-16, 16:256-16]
preprocess = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
return preprocess(image).unsqueeze(0) # Unsqueeze only required when there's 1 image in images batch
model = argusvision.models.resnext101_32x8d(map_location=torch.device('cpu'))
features = model(get_image())
print(features.shape)
Should output
...
torch.Size([1, 2048])
Benchmarks
Here are the evaluations of the popular datasets
Model | CIFAR-10 | STL-10 |
---|---|---|
Torchvision, ResNext101 32x8d | 90% | 81.1% |
Argusvision, ResNext101 32x8d | 92.6% | 84.2% |
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file argusvision-1.1.0.tar.gz
.
File metadata
- Download URL: argusvision-1.1.0.tar.gz
- Upload date:
- Size: 5.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 76244201c24bfa07f3774e2826c1557fe594434bde301c64c0e7138c22e1091b |
|
MD5 | 0dace4da8d0203fadc53cb04188317e9 |
|
BLAKE2b-256 | 5a16aa69bfb35945d74c8acf90edd5fcb3586b4c3699d676ba5b79a632e44b25 |
File details
Details for the file argusvision-1.1.0-py3-none-any.whl
.
File metadata
- Download URL: argusvision-1.1.0-py3-none-any.whl
- Upload date:
- Size: 6.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 22b9782afca5b0a6270a1084512a784ca0fcd2f6ed641f4e77c9a6365a046a71 |
|
MD5 | 938aae940b04cd925d516e700f3abd19 |
|
BLAKE2b-256 | 776c8eb7426be5b2db2631d28fb5387264e83a511254daeb905dbe9c486c1e00 |