A set of functions for miscellaneous arithmetic calculation

## Project description

arith_lib: A set of functions for miscellaneous arithmetic calculation

======================================================================

List of implemented functions

-----------------------------

- gcd(*arg): Greatest common divisor of a set of integers

- lcm(*arg): Least common multiple of a set of integers

- bezout(a, b): Provides a particular solution to diophantine

equation a.u+b.v=gcd(a, b)

- modulo_inv(a, b): inverse of a modulo b

- chinese_reminder(r, m): Solves the modular system:

x = r1 mod m1

x = r2 mod m2

...

x = r_n mod m_n

- gene_pseudo_prime(): Generator which provides 2, 3, 5 and then

all non multiple of 2, 3, 5

- is_prime(n): Check for n primality

- next_prime(n): Provides the first prime greater or equal

to n

- prime_factorization(n, frmt): Prime factorization of n

- divisors(n): Provides all divisors of n

- phi(n): Euler indicator function

- moebius(n): Moebius function

- to_base(n, **kwarg): Conversion from base 10 to base B

- frobenius(*A, n=None): Solves a1.x1 + a2.x2 + .. + ap.xp = n

or provides the greatest n for which this

equation has no solution.

a1, a2, ... are positive integers

x1, x2, ... are the unknowns, positive integers

Installation

------------

pip install arith_lib

======================================================================

List of implemented functions

-----------------------------

- gcd(*arg): Greatest common divisor of a set of integers

- lcm(*arg): Least common multiple of a set of integers

- bezout(a, b): Provides a particular solution to diophantine

equation a.u+b.v=gcd(a, b)

- modulo_inv(a, b): inverse of a modulo b

- chinese_reminder(r, m): Solves the modular system:

x = r1 mod m1

x = r2 mod m2

...

x = r_n mod m_n

- gene_pseudo_prime(): Generator which provides 2, 3, 5 and then

all non multiple of 2, 3, 5

- is_prime(n): Check for n primality

- next_prime(n): Provides the first prime greater or equal

to n

- prime_factorization(n, frmt): Prime factorization of n

- divisors(n): Provides all divisors of n

- phi(n): Euler indicator function

- moebius(n): Moebius function

- to_base(n, **kwarg): Conversion from base 10 to base B

- frobenius(*A, n=None): Solves a1.x1 + a2.x2 + .. + ap.xp = n

or provides the greatest n for which this

equation has no solution.

a1, a2, ... are positive integers

x1, x2, ... are the unknowns, positive integers

Installation

------------

pip install arith_lib