Skip to main content

Provides utility functions for accessing data repository for ARM data examples/notebooks

Project description

arm-test-data

CI PyPI Version Conda Version

A place to share atmospheric data with the community, shared throughout the Atmospheric Radiation Measurement user facility and beyond!

Sample data sets

These files are used as sample data in openradar examples/notebooks and are downloaded by arm-test-data package:

  • 201509021500.bi
  • AAFNAV_COR_20181104_R0.ict
  • NEON.D18.BARR.DP1.00002.001.000.010.001.SAAT_1min.2022-10.expanded.20221107T205629Z.csv
  • NEON.D18.BARR.DP1.00002.001.sensor_positions.20221107T205629Z.csv
  • NEON.D18.BARR.DP1.00002.001.variables.20221201T110553Z.csv
  • anltwr_mar19met.data
  • ayp22199.21m
  • ayp22200.00m
  • brw21001.dat
  • brw_12_2020_hour.dat
  • brw_CCl4_Day.dat
  • co2_brw_surface-insitu_1_ccgg_MonthlyData.txt
  • ctd21125.15w
  • ctd22187.00t.txt
  • enametC1.b1.20221109.000000.cdf
  • gucmetM1.b1.20230301.000000.cdf
  • list_of_files.txt
  • maraosmetM1.a1.20180201.000000.nc
  • marirtsstM1.b1.20190320.000000.nc
  • marnavM1.a1.20180201.000000.nc
  • met_brw_insitu_1_obop_hour_2020.txt
  • met_lcl.nc
  • mosaossp2M1.00.20191216.000601.raw.20191216000000.ini
  • mosaossp2M1.00.20191216.130601.raw.20191216x193.sp2b
  • mosaossp2auxM1.00.20191217.010801.raw.20191216000000.hk
  • nsacloudphaseC1.c1.20180601.000000.nc
  • nsasurfspecalb1mlawerC1.c1.20160609.080000.nc
  • sgp30ebbrE13.b1.20190601.000000.nc
  • sgp30ebbrE32.b1.20191125.000000.nc
  • sgp30ebbrE32.b1.20191130.000000.nc
  • sgp30ecorE14.b1.20190601.000000.cdf
  • sgpaerich1C1.b1.20190501.000342.nc
  • sgpaosacsmE13.b2.20230420.000109.nc
  • sgpaosccn2colaE13.b1.20170903.000000.nc
  • sgpbrsC1.b1.20190705.000000.cdf
  • sgpceilC1.b1.20190101.000000.nc
  • sgpco2flx4mC1.b1.20201007.001500.nc
  • sgpdlppiC1.b1.20191015.120023.cdf
  • sgpdlppiC1.b1.20191015.121506.cdf
  • sgpirt25m20sC1.a0.20190601.000000.cdf
  • sgpmetE13.b1.20190101.000000.cdf
  • sgpmetE13.b1.20190102.000000.cdf
  • sgpmetE13.b1.20190103.000000.cdf
  • sgpmetE13.b1.20190104.000000.cdf
  • sgpmetE13.b1.20190105.000000.cdf
  • sgpmetE13.b1.20190106.000000.cdf
  • sgpmetE13.b1.20190107.000000.cdf
  • sgpmetE13.b1.20190508.000000.cdf
  • sgpmetE13.b1.20210401.000000.csv
  • sgpmetE13.b1.yaml
  • sgpmetE15.b1.20190508.000000.cdf
  • sgpmetE31.b1.20190508.000000.cdf
  • sgpmetE32.b1.20190508.000000.cdf
  • sgpmetE33.b1.20190508.000000.cdf
  • sgpmetE34.b1.20190508.000000.cdf
  • sgpmetE35.b1.20190508.000000.cdf
  • sgpmetE36.b1.20190508.000000.cdf
  • sgpmetE37.b1.20190508.000000.cdf
  • sgpmetE38.b1.20190508.000000.cdf
  • sgpmetE39.b1.20190508.000000.cdf
  • sgpmetE40.b1.20190508.000000.cdf
  • sgpmetE9.b1.20190508.000000.cdf
  • sgpmet_no_time.nc
  • sgpmet_test_time.nc
  • sgpmfrsr7nchE11.b1.20210329.070000.nc
  • sgpmmcrC1.b1.1.cdf
  • sgpmmcrC1.b1.2.cdf
  • sgpmplpolfsC1.b1.20190502.000000.cdf
  • sgprlC1.a0.20160131.000000.nc
  • sgpsebsE14.b1.20190601.000000.cdf
  • sgpsirsE13.b1.20190101.000000.cdf
  • sgpsondewnpnC1.b1.20190101.053200.cdf
  • sgpstampE13.b1.20200101.000000.nc
  • sgpstampE31.b1.20200101.000000.nc
  • sgpstampE32.b1.20200101.000000.nc
  • sgpstampE33.b1.20200101.000000.nc
  • sgpstampE34.b1.20200101.000000.nc
  • sgpstampE9.b1.20200101.000000.nc
  • sodar.20230404.mnd
  • twpsondewnpnC3.b1.20060119.050300.custom.cdf
  • twpsondewnpnC3.b1.20060119.112000.custom.cdf
  • twpsondewnpnC3.b1.20060119.163300.custom.cdf
  • twpsondewnpnC3.b1.20060119.231600.custom.cdf
  • twpsondewnpnC3.b1.20060120.043800.custom.cdf
  • twpsondewnpnC3.b1.20060120.111900.custom.cdf
  • twpsondewnpnC3.b1.20060120.170800.custom.cdf
  • twpsondewnpnC3.b1.20060120.231500.custom.cdf
  • twpsondewnpnC3.b1.20060121.051500.custom.cdf
  • twpsondewnpnC3.b1.20060121.111600.custom.cdf
  • twpsondewnpnC3.b1.20060121.171600.custom.cdf
  • twpsondewnpnC3.b1.20060121.231600.custom.cdf
  • twpsondewnpnC3.b1.20060122.052600.custom.cdf
  • twpsondewnpnC3.b1.20060122.111500.custom.cdf
  • twpsondewnpnC3.b1.20060122.171800.custom.cdf
  • twpsondewnpnC3.b1.20060122.232600.custom.cdf
  • twpsondewnpnC3.b1.20060123.052500.custom.cdf
  • twpsondewnpnC3.b1.20060123.111700.custom.cdf
  • twpsondewnpnC3.b1.20060123.171600.custom.cdf
  • twpsondewnpnC3.b1.20060123.231500.custom.cdf
  • twpsondewnpnC3.b1.20060124.051500.custom.cdf
  • twpsondewnpnC3.b1.20060124.111800.custom.cdf
  • twpsondewnpnC3.b1.20060124.171700.custom.cdf
  • twpsondewnpnC3.b1.20060124.231500.custom.cdf
  • twpvisstgridirtemp.c1.20050705.002500.nc
  • vdis.b1

Adding new datasets

To add a new dataset file, please follow these steps:

  1. Add the dataset file to the data/ directory
  2. From the command line, run python make_registry.py script to update the registry file residing in arm-test-data/registry.txt
  3. Commit and push your changes to GitHub

Using datasets in notebooks and/or scripts

  • Ensure the arm-test-data package is installed in your environment

    python -m pip install arm-test-data
    
    # or
    
    python -m pip install git+https://github.com/ARM-DOE/arm-test-data
    
    # or
    
    conda install -c conda-forge arm-test-data
    
  • Import DATASETS and inspect the registry to find out which datasets are available

    In [1]: from arm_test_data import DATASETS
    
    In [2]: DATASETS.registry_files
    Out[2]: ['sample_file.nc`]
    
  • To fetch a data file of interest, use the .fetch method and provide the filename of the data file. This will

    • download and cache the file if it doesn't exist already.
    • retrieve and return the local path
    In [4]: filepath = DATASETS.fetch('sample_data.nc')
    
    In [5]: filepath
    Out[5]: '/Users/mgrover/Library/Caches/arm-test-data/sample_sgp_data.nc'
    
  • Once you have access to the local filepath, you can then use it to load your dataset into pandas or xarray or your package of choice:

    In [6]: radar = pyart.io.read(filepath)
    

Changing the default data cache location

The default cache location (where the data are saved on your local system) is dependent on the operating system. You can use the locate() method to identify it:

from arm_test_data import locate
locate()

The location can be overwritten by the ACT_TEST_DATA_DIR environment variable to the desired destination.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

arm-test-data-0.0.9.tar.gz (16.7 kB view details)

Uploaded Source

Built Distribution

arm_test_data-0.0.9-py3-none-any.whl (11.8 kB view details)

Uploaded Python 3

File details

Details for the file arm-test-data-0.0.9.tar.gz.

File metadata

  • Download URL: arm-test-data-0.0.9.tar.gz
  • Upload date:
  • Size: 16.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for arm-test-data-0.0.9.tar.gz
Algorithm Hash digest
SHA256 515e718aacec8699cde34e30e0df8509223c61d654eee2c72e12b75c0fc39f60
MD5 2510ec991111fd23099580580ae94a71
BLAKE2b-256 5d563133cb61935030e80ef5e20637081c01eecce08ef17ba1c28b3d738e6bc3

See more details on using hashes here.

File details

Details for the file arm_test_data-0.0.9-py3-none-any.whl.

File metadata

File hashes

Hashes for arm_test_data-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 edcc17816ef42ddc7fb50f4ecb7904bb0fc694df5e28e8f302631fd8278104ac
MD5 94e9ec9f8e730be32dd4304076719b55
BLAKE2b-256 21dafde6485c6d35c967ddb9a67b9eb274602ee73b4ed61b35ad13fba5816c4b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page