Skip to main content

Lineage prediction from SARS-CoV-2 sequences

Project description

Armadillin

The recommended method for calling lineages remains normal Pangolin: https://github.com/cov-lineages/pangolin

A Re-engineered Method Allowing DetermInation of viraL LINeages

Armadillin is an experimental alternative approach to training models on lineages designated by the PANGO team.

Armadillin uses dense neural networks for assignment, which means it doesn't have to assume that positions with an N are the reference sequence. Armadillin is still very fast, in part because it sparsifies the feature input to this neural net during training.

Installation (for inference)

conda create --name armadillin python=3.9
conda activate armadillin
pip3 install armadillin

Usage

You must already have aligned your files to the reference (doing this automatically is on the backlist).

We'll use the COG-UK aligned file for a demo:

wget https://cog-uk.s3.climb.ac.uk/phylogenetics/latest/cog_alignment.fasta.gz
armadillin https://cog-uk.s3.climb.ac.uk/phylogenetics/latest/cog_alignment.fasta.gz

or

armadillin https://cog-uk.s3.climb.ac.uk/phylogenetics/latest/cog_alignment.fasta.gz > output.tsv

Training your own models

Dataset generation

python -m armadillin.training_make_input --designations ~/gisaid/pango-designation-1.2.88/ --gisaid_meta_file ~/gisaid/metadata.tsv --gisaid_mmsa ~/gisaid/msa_2021-10-20.tar.xz --output ~/training_set_wed
python -m armadillin.train --shard_dir ~/training_set_thu/ --use_wandb --checkpoint_path ~/checkpoint_thur_dense
python -m armadillin.train --starting_model ~/checkpoint_thur_dense/checkpoint.h5 --use_wandb --checkpoint_path ~/checkpoint_thur_sparse --do_pruning --shard_dir ~/training_set_thu/
 python -m armadillin.training_create_small_model -i ~/checkpoint_thur_sparse/checkpoint.h5

Related tools

Pangolin is the OG for assigning lineages

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

armadillin-0.20.tar.gz (22.9 MB view details)

Uploaded Source

Built Distribution

armadillin-0.20-py3-none-any.whl (23.2 MB view details)

Uploaded Python 3

File details

Details for the file armadillin-0.20.tar.gz.

File metadata

  • Download URL: armadillin-0.20.tar.gz
  • Upload date:
  • Size: 22.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for armadillin-0.20.tar.gz
Algorithm Hash digest
SHA256 71001befa002fba22a5b0890bac5f6d457ec2ba497ed29a7130f9acaf2f06f06
MD5 030764e995ccff999a526c2369168c42
BLAKE2b-256 c21ca2f428b56a3ef920292e49bccc764ac94b24a12e36689f53331f35810021

See more details on using hashes here.

Provenance

File details

Details for the file armadillin-0.20-py3-none-any.whl.

File metadata

  • Download URL: armadillin-0.20-py3-none-any.whl
  • Upload date:
  • Size: 23.2 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for armadillin-0.20-py3-none-any.whl
Algorithm Hash digest
SHA256 db5092b4e41bbca5fdf129037098e8ade654a29be2653566d016683a8a92ff0d
MD5 58057575ba4d033ef66f0486ff73720f
BLAKE2b-256 a46b6bbd6900a15be7331d4fce9fab44fef2ff70688e97e51afef070c3c61210

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page