Skip to main content

Lineage prediction from SARS-CoV-2 sequences

Project description

Armadillin

This is an experimental tool under development. The recommended method for calling lineages remains normal Pangolin: https://github.com/cov-lineages/pangolin

A Re-engineered Method Allowing DetermInation of viraL LINeages

Armadillin is an experimental alternative approach to training models on lineages designated by the PANGO team.

Armadillin uses dense neural networks for assignment, which means it doesn't have to assume that positions with an N are the reference sequence. Armadillin is still very fast, in part because it sparsifies the feature input to this neural net during training.

Installation (for inference)

conda create --name armadillin python=3.9
conda activate armadillin
pip3 install armadillin

Usage

You must already have aligned your files to the reference (doing this automatically is on the backlist).

We'll use the COG-UK aligned file for a demo:

wget https://cog-uk.s3.climb.ac.uk/phylogenetics/latest/cog_alignment.fasta.gz
armadillin https://cog-uk.s3.climb.ac.uk/phylogenetics/latest/cog_alignment.fasta.gz

or

armadillin https://cog-uk.s3.climb.ac.uk/phylogenetics/latest/cog_alignment.fasta.gz > output.tsv

Training your own models

Dataset generation

python -m armadillin.training_make_input --designations ~/gisaid/pango-designation-1.2.88/ --gisaid_meta_file ~/gisaid/metadata.tsv --gisaid_mmsa ~/gisaid/msa_2021-10-20.tar.xz --output ~/training_set_nov_02
 python -m armadillin.train --shard_dir /home/theo/training_set_nov_02 --use_wandb --checkpoint_path ~/nov2check1

 python -m armadillin.train --starting_model ~/nov2check1/checkpoint.h5 --use_wandb --checkpoint_path ~/nov2check1_sparse/ --do_pruning --shard_dir /home/theo/training_set_nov_02

 python -m armadillin.training_create_small_model -i /tmp/model_zeros.h5 -d  /home/theo/training_set_nov_02

Related tools

Pangolin is the OG for assigning lineages

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

armadillin-0.25.tar.gz (21.3 MB view details)

Uploaded Source

Built Distribution

armadillin-0.25-py3-none-any.whl (21.3 MB view details)

Uploaded Python 3

File details

Details for the file armadillin-0.25.tar.gz.

File metadata

  • Download URL: armadillin-0.25.tar.gz
  • Upload date:
  • Size: 21.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for armadillin-0.25.tar.gz
Algorithm Hash digest
SHA256 63e3444b600967fae81668665e0f5eef5971b0ba081af5723c55e44f9c952c83
MD5 d13177b82b5a98aa9d9d51aa02504fdb
BLAKE2b-256 4ee6d116ab5debcd9bd19a6a75172dd2b7e92202b460100e0c175877dc1f4fde

See more details on using hashes here.

Provenance

File details

Details for the file armadillin-0.25-py3-none-any.whl.

File metadata

  • Download URL: armadillin-0.25-py3-none-any.whl
  • Upload date:
  • Size: 21.3 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for armadillin-0.25-py3-none-any.whl
Algorithm Hash digest
SHA256 8ccc77af849f16fa800571a45b1aec7e654d0af3b26e4eb66b200c319a9c3d63
MD5 05f6058115c4269a076aa86444ffa989
BLAKE2b-256 5cf35682bb57e4df4cfba7aca14df89ef5196565e5a6af00501c74b86a639737

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page