Skip to main content

Lineage prediction from SARS-CoV-2 sequences

Project description

Armadillin

This is an experimental tool under development. The recommended method for calling lineages remains normal Pangolin: https://github.com/cov-lineages/pangolin

A Re-engineered Method Allowing DetermInation of viraL LINeages

Armadillin is an experimental alternative approach to training models on lineages designated by the PANGO team.

Armadillin uses dense neural networks for assignment, which means it doesn't have to assume that positions with an N are the reference sequence. Armadillin is still very fast, in part because it sparsifies the feature input to this neural net during training.

Installation (for inference)

conda create --name armadillin python=3.9
conda activate armadillin
pip3 install armadillin

Usage

You must already have aligned your files to the reference (doing this automatically is on the backlist).

We'll use the COG-UK aligned file for a demo:

wget https://cog-uk.s3.climb.ac.uk/phylogenetics/latest/cog_alignment.fasta.gz
armadillin https://cog-uk.s3.climb.ac.uk/phylogenetics/latest/cog_alignment.fasta.gz

or

armadillin https://cog-uk.s3.climb.ac.uk/phylogenetics/latest/cog_alignment.fasta.gz > output.tsv

Training your own models

Dataset generation

python -m armadillin.training_make_input --designations ~/gisaid/pango-designation-1.2.88/ --gisaid_meta_file ~/gisaid/metadata.tsv --gisaid_mmsa ~/gisaid/msa_2021-10-20.tar.xz --output ~/training_set_nov_02
 python -m armadillin.train --shard_dir /home/theo/training_set_nov_02 --use_wandb --checkpoint_path ~/nov2check1

 python -m armadillin.train --starting_model ~/nov2check1/checkpoint.h5 --use_wandb --checkpoint_path ~/nov2check1_sparse/ --do_pruning --shard_dir /home/theo/training_set_nov_02

 python -m armadillin.training_create_small_model -i /tmp/model_zeros.h5 -d  /home/theo/training_set_nov_02

Related tools

Pangolin is the OG for assigning lineages

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

armadillin-0.34.tar.gz (21.3 MB view details)

Uploaded Source

Built Distribution

armadillin-0.34-py3-none-any.whl (21.3 MB view details)

Uploaded Python 3

File details

Details for the file armadillin-0.34.tar.gz.

File metadata

  • Download URL: armadillin-0.34.tar.gz
  • Upload date:
  • Size: 21.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for armadillin-0.34.tar.gz
Algorithm Hash digest
SHA256 4d5dd333e2a7d2a19bd470af7cd11e2050eb1c26bc0d23881fe38da88d6c1d53
MD5 edb6e7f370a494c52993f916e0679ea7
BLAKE2b-256 8f1a8b2be8cecc549d850b1cb998021245e14b470d59c2b39a1a612813feca57

See more details on using hashes here.

Provenance

File details

Details for the file armadillin-0.34-py3-none-any.whl.

File metadata

  • Download URL: armadillin-0.34-py3-none-any.whl
  • Upload date:
  • Size: 21.3 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for armadillin-0.34-py3-none-any.whl
Algorithm Hash digest
SHA256 5c83865e3ef9b1c2622e8f70b84e2e9f4d6322c1a7bc521c79e007be97be4edf
MD5 c4bfe8c13f72b26f3cf598e762876594
BLAKE2b-256 456acc83e27828f85651136b594f5399a94023a9c026f6d4669ed9e469c35aa5

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page