Skip to main content

Lineage prediction from SARS-CoV-2 sequences

Project description

Armadillin

This is an experimental tool under development. The recommended method for calling lineages remains normal Pangolin: https://github.com/cov-lineages/pangolin

A Re-engineered Method Allowing DetermInation of viraL LINeages

Armadillin is an experimental alternative approach to training models on lineages designated by the PANGO team.

Armadillin uses dense neural networks for assignment, which means it doesn't have to assume that positions with an N are the reference sequence. Armadillin is still very fast, in part because it sparsifies the feature input to this neural net during training.

Installation (for inference)

conda create --name armadillin python=3.9
conda activate armadillin
pip3 install armadillin

Usage

You must already have aligned your files to the reference (doing this automatically is on the backlist).

We'll use the COG-UK aligned file for a demo:

wget https://cog-uk.s3.climb.ac.uk/phylogenetics/latest/cog_alignment.fasta.gz
armadillin https://cog-uk.s3.climb.ac.uk/phylogenetics/latest/cog_alignment.fasta.gz

or

armadillin https://cog-uk.s3.climb.ac.uk/phylogenetics/latest/cog_alignment.fasta.gz > output.tsv

Training your own models

Dataset generation

python -m armadillin.training_make_input --designations ~/gisaid/pango-designation-1.2.88/ --gisaid_meta_file ~/gisaid/metadata.tsv --gisaid_mmsa ~/gisaid/msa_2021-10-20.tar.xz --output ~/training_set_nov_02
 python -m armadillin.train --shard_dir /home/theo/training_set_nov_02 --use_wandb --checkpoint_path ~/nov2check1

 python -m armadillin.train --starting_model ~/nov2check1/checkpoint.h5 --use_wandb --checkpoint_path ~/nov2check1_sparse/ --do_pruning --shard_dir /home/theo/training_set_nov_02

 python -m armadillin.training_create_small_model -i /tmp/model_zeros.h5 -d  /home/theo/training_set_nov_02

Related tools

Pangolin is the OG for assigning lineages

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

armadillin-0.35.tar.gz (21.3 MB view details)

Uploaded Source

Built Distribution

armadillin-0.35-py3-none-any.whl (21.3 MB view details)

Uploaded Python 3

File details

Details for the file armadillin-0.35.tar.gz.

File metadata

  • Download URL: armadillin-0.35.tar.gz
  • Upload date:
  • Size: 21.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for armadillin-0.35.tar.gz
Algorithm Hash digest
SHA256 8d54590859ebd4a772c21d433afed7104b25826d1728e0ff8b1b9df290d76849
MD5 2f9f6aac86ef806eb83f74ac30f491dd
BLAKE2b-256 1c8069ec2fcad5eed594c3adfe7e3abfb1b3f3ba83943294b89dde9ad66c4fd1

See more details on using hashes here.

Provenance

File details

Details for the file armadillin-0.35-py3-none-any.whl.

File metadata

  • Download URL: armadillin-0.35-py3-none-any.whl
  • Upload date:
  • Size: 21.3 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for armadillin-0.35-py3-none-any.whl
Algorithm Hash digest
SHA256 b66b5e9cf453b1abdc3c9c4e3908d699b7f2f6b4f35fba65431765204bdf7610
MD5 01e2302c7b8b2f56271dcdb1c29494c7
BLAKE2b-256 e92e1a34627a7f115f580aa305b86c8e650bdf0e6e27e941bc397644a8f808ef

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page