Skip to main content

Lineage prediction from SARS-CoV-2 sequences

Project description

Armadillin

This is an experimental tool under development. The recommended method for calling lineages remains normal Pangolin: https://github.com/cov-lineages/pangolin

A Re-engineered Method Allowing DetermInation of viraL LINeages

Armadillin is an experimental alternative approach to training models on lineages designated by the PANGO team.

Armadillin uses dense neural networks for assignment, which means it doesn't have to assume that positions with an N are the reference sequence. Armadillin is still very fast, in part because it sparsifies the feature input to this neural net during training.

Installation (for inference)

conda create --name armadillin python=3.9
conda activate armadillin
pip3 install armadillin

Usage

You must already have aligned your files to the reference (doing this automatically is on the backlist).

We'll use the COG-UK aligned file for a demo:

wget https://cog-uk.s3.climb.ac.uk/phylogenetics/latest/cog_alignment.fasta.gz
armadillin https://cog-uk.s3.climb.ac.uk/phylogenetics/latest/cog_alignment.fasta.gz

or

armadillin https://cog-uk.s3.climb.ac.uk/phylogenetics/latest/cog_alignment.fasta.gz > output.tsv

Training your own models

Dataset generation

python -m armadillin.training_make_input --designations ~/gisaid/pango-designation-1.2.88/ --gisaid_meta_file ~/gisaid/metadata.tsv --gisaid_mmsa ~/gisaid/msa_2021-10-20.tar.xz --output ~/training_set_nov_02
 python -m armadillin.train --shard_dir /home/theo/training_set_nov_02 --use_wandb --checkpoint_path ~/nov2check1

 python -m armadillin.train --starting_model ~/nov2check1/checkpoint.h5 --use_wandb --checkpoint_path ~/nov2check1_sparse/ --do_pruning --shard_dir /home/theo/training_set_nov_02

 python -m armadillin.training_create_small_model -i /tmp/model_zeros.h5 -d  /home/theo/training_set_nov_02

Related tools

Pangolin is the OG for assigning lineages

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

armadillin-0.37.tar.gz (21.3 MB view details)

Uploaded Source

Built Distribution

armadillin-0.37-py3-none-any.whl (21.3 MB view details)

Uploaded Python 3

File details

Details for the file armadillin-0.37.tar.gz.

File metadata

  • Download URL: armadillin-0.37.tar.gz
  • Upload date:
  • Size: 21.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for armadillin-0.37.tar.gz
Algorithm Hash digest
SHA256 6293225083dc1d1fe77569a8e9e868b34782fb95117ee28ecc0dd3db268c524b
MD5 ed1e6811c253e803ab49d27acb1819d9
BLAKE2b-256 9a37c4a702fe41798f6d58dbc2788228826fe04641de82ec291f590376156273

See more details on using hashes here.

Provenance

File details

Details for the file armadillin-0.37-py3-none-any.whl.

File metadata

  • Download URL: armadillin-0.37-py3-none-any.whl
  • Upload date:
  • Size: 21.3 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for armadillin-0.37-py3-none-any.whl
Algorithm Hash digest
SHA256 372d92ebab69a7cbf553b482ded0dc4e6907199ef846e5b7329ad603d4f300e1
MD5 264736f6c35ebcde18852c8185ea7b3d
BLAKE2b-256 f5758f598e27ccb1979cf4be18caccb904ac3b26e590b9e326306cd316282369

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page