Skip to main content

Lineage prediction from SARS-CoV-2 sequences

Project description

Armadillin

This is an experimental tool under development. The recommended method for calling lineages remains normal Pangolin: https://github.com/cov-lineages/pangolin

A Re-engineered Method Allowing DetermInation of viraL LINeages

Armadillin is an experimental alternative approach to training models on lineages designated by the PANGO team.

Armadillin uses dense neural networks for assignment, which means it doesn't have to assume that positions with an N are the reference sequence. Armadillin is still very fast, in part because it sparsifies the feature input to this neural net during training.

Installation (for inference)

conda create --name armadillin python=3.9
conda activate armadillin
pip3 install armadillin

Usage

You must already have aligned your files to the reference (doing this automatically is on the backlist).

We'll use the COG-UK aligned file for a demo:

wget https://cog-uk.s3.climb.ac.uk/phylogenetics/latest/cog_alignment.fasta.gz
armadillin https://cog-uk.s3.climb.ac.uk/phylogenetics/latest/cog_alignment.fasta.gz

or

armadillin https://cog-uk.s3.climb.ac.uk/phylogenetics/latest/cog_alignment.fasta.gz > output.tsv

Training your own models

Dataset generation

python -m armadillin.training_make_input --designations ~/gisaid/pango-designation-1.2.88/ --gisaid_meta_file ~/gisaid/metadata.tsv --gisaid_mmsa ~/gisaid/msa_2021-10-20.tar.xz --output ~/training_set_nov_02
 python -m armadillin.train --shard_dir /home/theo/training_set_nov_02 --use_wandb --checkpoint_path ~/nov2check1

 python -m armadillin.train --starting_model ~/nov2check1/checkpoint.h5 --use_wandb --checkpoint_path ~/nov2check1_sparse/ --do_pruning --shard_dir /home/theo/training_set_nov_02

 python -m armadillin.training_create_small_model -i /tmp/model_zeros.h5 -d  /home/theo/training_set_nov_02

Related tools

Pangolin is the OG for assigning lineages

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

armadillin-0.40.tar.gz (21.3 MB view details)

Uploaded Source

Built Distribution

armadillin-0.40-py3-none-any.whl (21.3 MB view details)

Uploaded Python 3

File details

Details for the file armadillin-0.40.tar.gz.

File metadata

  • Download URL: armadillin-0.40.tar.gz
  • Upload date:
  • Size: 21.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for armadillin-0.40.tar.gz
Algorithm Hash digest
SHA256 7b7cecbe388e67b07748ddf187eeb4647ce47ee10f6ac807e43040a6ff34fb1c
MD5 c81ef1e3199615348aa9573567ab741c
BLAKE2b-256 28dd6858e13d6b9ad33418b286132ff403f59f4f0289eca3eb63e10729779ab0

See more details on using hashes here.

Provenance

File details

Details for the file armadillin-0.40-py3-none-any.whl.

File metadata

  • Download URL: armadillin-0.40-py3-none-any.whl
  • Upload date:
  • Size: 21.3 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for armadillin-0.40-py3-none-any.whl
Algorithm Hash digest
SHA256 a605c43c7667fe30c4a058f029811c043417f57178baed41663696d99ac47d06
MD5 dd0e5263f0a93d667e930c7714c0ad43
BLAKE2b-256 45f79b0584a779fa14bf35a672b42e3a8b37f046c44d3afb3b19dab7ef2cf849

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page