Skip to main content

Armory Evaluation Matrix Library

Project description

armory-matrix logo


Overview

Armory-matrix provides a utility to automatically expand parameter specifications in order to evaluate all combinations of parameters.

For example, given two parameters x and y where x can be an integer between 1 and 3 and y can be 1.5 or 6.5, we have the following matrix of parameter combinations:

  x y
1 1 1.5
2 1 6.5
3 2 1.5
4 2 6.5
5 3 1.5
6 3 6.5

As the range of values for each parameter increases, and as more variable parameters are added, the matrix becomes significantly larger.

Installation

pip install armory-matrix

Usage

Use the matrix decorator to specify a set or range of values for parameters of a function. When the decorated function is invoked, it will automatically be called once for each combination of input parameters.

from armory.matrix import matrix

@matrix(
    x=range(1, 3),
    y=[1.5, 6.5],
)
def print_xy(x, y):
    print(f"{x=}, {y=}")

print_xy()

Will produce the following output:

x=1, y=1.5
x=1, y=6.5
x=2, y=1.5
x=2, y=6.5

This is roughly equivalent to the nested loops below:

def print_xy(x, y):
    print(f"{x=}, {y=}")

for x in range(1, 3):
    for y in [1.5, 6.5]:
        print_xy(x=x, y=y)

Parameter inspection

The resulting parameter matrix may be inspected via the num_rows and matrix properties of the decorated function.

assert print_xy.num_rows == 4

for row in print_xy.matrix:
    print(row)

Will produce the following output:

{'x': 1, 'y': 1.5}
{'x': 1, 'y': 6.5}
{'x': 2, 'y': 1.5}
{'x': 2, 'y': 6.5}

Parameter range specification

The parameter ranges specified with the @matrix decorator can be any type as long as it is iterable. When a non-iterable value is used, it is effectively a fixed value for all rows of the matrix. The following are all valid matrix parameter values:

def gen():
    for d in [None, int, str]:
        yield d

@matrix(
    a=gen,                        # generator function
    b=(b for b in (True, False)), # generator
    c=42,                         # fixed value
    d=range(5),                   # iterable object (via __iter__)
    e=["odd", "even"],            # sequence (set, tuple, list)
)
def foo(a, b, c, d):
    pass

See the note below in Dynamic parameters regarding use of generator functions.

Return values

The return value from calling the decorated function will be a sequence of all the return values for each invocation of the function with parameters from rows of the matrix. If the function raises an exception, the caught exception will be the return value for that call.

@matrix(a=range(1, 3), b=range(3))
def division(a, b):
    return a / b

print(division())

Will produce the following output:

[
    ZeroDivisionError('division by zero'), # 1 / 0
    1.0,                                   # 1 / 1
    0.5,                                   # 1 / 2
    ZeroDivisionError('division by zero'), # 2 / 0
    2.0,                                   # 2 / 1
    1.0,                                   # 2 / 2
]

Partial parameter specification

It is also possible to only specify a subset of a function's arguments as matrix parameters. Any arguments not defined with the @matrix decorator must be specified when the function is invoked.

@matrix(x=range(1, 4))
def quadratic(a, x, b):
    return (a * x) + b

assert quadratic(a=2, b=10) == [12, 14, 16]

Post-definition overrides

Parameters may be overridden after definition:

print_xy.override(x=[7])()
x=7, y=1.5
x=7, y=6.5

Dynamic parameters

Dynamic or dependent parameters may be generated using a callable rather than a value range.

def y(x):
    if x == 1:
        return [1.5, 6.5]
    return [1.7, 2.3, 3.4]

@matrix(
    x=range(1, 3),
    y=y,
)
def print_xy(x, y):
    print(f"{x=}, {y=}")

print_xy()
x=1, y=1.5
x=1, y=6.5
x=2, y=1.7
x=2, y=2.3
x=2, y=3.4

This is roughly equivalent to the following:

def y(x):
    if x == 1:
        return [1.5, 6.5]
    return [1.7, 2.3, 3.4]

def print_xy(x, y):
    print(f"{x=}, {y=}")

for x in range(1, 3):
    for _y in y(x=x):
        print_xy(x=x, y=_y)

The callable will be invoked with all prior generated parameters, in the order they are defined in the @matrix decorator. It is possible to specify multiple dynamic parameters, where the latter parameters depend on the former.

Generator Functions

A custom generator function as a parameter range is effectively equivalent to a dynamic parameter range. This is intentional, since generators cannot be rewound and it is often necessary to iterate multiple times through a matrix parameter space. However, this means that you may need to account for the prior parameter arguments that will be passed to the generator function.

def gen(**kwargs):
    for d in [None, int, str]:
        yield d

@matrix(
    a=range(5),
    b=gen,
)
def foo(a, b):
    pass

If we omitted the **kwargs from gen, we would encounter an "unexpected keyword argument" error.

Filtering

Rows may be omitted from execution by providing a filter callable:

assert print_xy.num_rows == 4
filtered_print_xy = print_xy.filter(lambda x, y: x == 1 and y == 1.6)
assert filtered_print_xy.num_rows == 3
filtered_print_xy()

Any row for which the filter callable returns True will be omitted from the matrix.

x=1, y=1.5
x=2, y=1.5
x=2, y=6.5

Partitioning

For distributed runs (e.g., as a job submitted to a SLURM cluster), one may specify a partition of the matrix to be run:

print_xy[0::2]()  # invoke partition 1 of 2
print("---")
print_xy[1::2]()  # invoke partition 2 of 2
x=1, y=1.5
x=1, y=6.5
---
x=2, y=1.5
x=2, y=6.5

Typical Python slice operations apply, including use of a stop index. Note however, that negative start or stop values are not supported.

print_xy[10]() # Skip the first 10 rows
print_xy[5:10]() # Execute rows 5 through 9

Parallelization

Function invocations may be parallelized within the Python process by using a thread pool and specifying the max number of workers in the pool:

print_xy.parallel(2)()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

armory_matrix-24.6.1-py3-none-any.whl (13.1 kB view details)

Uploaded Python 3

File details

Details for the file armory_matrix-24.6.1-py3-none-any.whl.

File metadata

File hashes

Hashes for armory_matrix-24.6.1-py3-none-any.whl
Algorithm Hash digest
SHA256 1181e668af20c1282e40676693af91a3d0020f60f83adc84583bb0bf9572de10
MD5 0a3940e864b5c3a8cf6e342f64253b65
BLAKE2b-256 2d9cca29b94a2b445f9102151082e97f5e98484151df27467dbc8ee0764b0a41

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page