Arrakis Python client library
Project description
arrakis-python
Arrakis Python client library
Resources
Installation
pip install git+https://git.ligo.org/ngdd/arrakis-python.git
Features
- Query live and historical timeseries data
- Describe channel metadata
- Search for channels matching a set of conditions
- Publish timeseries data
Quickstart
Fetch timeseries
import arrakis
start = 1187000000
end = 1187001000
channels = [
"H1:CAL-DELTAL_EXTERNAL_DQ",
"H1:LSC-POP_A_LF_OUT_DQ",
]
block = arrakis.fetch(channels, start, end)
for channel, series in block.items():
print(channel, series)
where block
is a [arrakis.block.SeriesBlock][] and series
is a
[arrakis.block.Series][].
Stream timeseries
1. Live data
import arrakis
channels = [
"H1:CAL-DELTAL_EXTERNAL_DQ",
"H1:LSC-POP_A_LF_OUT_DQ",
]
for block in arrakis.stream(channels):
print(block)
2. Historical data
import arrakis
start = 1187000000
end = 1187001000
channels = [
"H1:CAL-DELTAL_EXTERNAL_DQ",
"H1:LSC-POP_A_LF_OUT_DQ",
]
for block in arrakis.stream(channels, start, end):
print(block)
Describe metadata
import arrakis
channels = [
"H1:CAL-DELTAL_EXTERNAL_DQ",
"H1:LSC-POP_A_LF_OUT_DQ",
]
metadata = arrakis.describe(channels)
where metadata
is a dictionary mapping channel names to
[arrakis.channel.Channel][].
Find channels
import arrakis
for channel in arrakis.find("H1:LSC-*"):
print(channel)
where channel
is a [arrakis.channel.Channel][].
Count channels
import arrakis
count = arrakis.count("H1:LSC-*")
Publish timeseries
from arrakis import Channel, Publisher, SeriesBlock, Time
import numpy
# define channel metadata
metadata = {
"H1:FKE-TEST_CHANNEL1": Channel.from_name(
"H1:FKE-TEST_CHANNEL1",
data_type=numpy.float64,
sample_rate=64,
),
"H1:FKE-TEST_CHANNEL2": Channel.from_name(
"H1:FKE-TEST_CHANNEL2",
data_type=numpy.int32,
sample_rate=32,
),
}
with Publisher() as publisher:
# initial registration
producer_id = "my_producer" # admin-assigned ID
publisher.register(producer_id, source="H1")
# create block to publish
series = {
"H1:FKE-TEST_CHANNEL1": numpy.array([0.1, 0.2, 0.3, 0.4], dtype=numpy.float64),
"H1:FKE-TEST_CHANNEL2": numpy.array([1, 2], dtype=numpy.int32),
}
block = SeriesBlock(
1234567890 * Time.SECONDS, # time in nanoseconds for first sample
series, # the data to publish
metadata, # the channel metadata
)
# publish timeseries
publisher.publish(block)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
arrakis_python-0.1.0.tar.gz
(25.0 kB
view details)
Built Distribution
File details
Details for the file arrakis_python-0.1.0.tar.gz
.
File metadata
- Download URL: arrakis_python-0.1.0.tar.gz
- Upload date:
- Size: 25.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5ff63df38078aa89ff1e09c53f1f44eb20cec9b825a5a9504b2dc8737f43c210 |
|
MD5 | 3f27471800cf8bc56c1b8417076f7edf |
|
BLAKE2b-256 | dfb095e0aece6ae0f15a91e346150f1d4b6156e01b2694a80820dea1a4f4fa85 |
File details
Details for the file arrakis_python-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: arrakis_python-0.1.0-py3-none-any.whl
- Upload date:
- Size: 25.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1a84c29c0ce155b060eb712e29828636a16e4ccd66df1c04d1ab76384bd9e111 |
|
MD5 | b481a718ac37a33a1c52ad74e8d62047 |
|
BLAKE2b-256 | f7e4c78e1bf9d86b8cc8432f60b8962d625091ee1dd8119db63633a8dff1a0b6 |