Skip to main content

Converts a Numpy array to a PIL image.

Project description

Array2image

Array2image helps you convert Numpy arrays to PIL images. It comes with a single function array_to_image().

When given an array, it automatically guesses its spatial and channel dimensions. Spatial dimensions greater than 2 are considered as images of images. The resulting image is then represented differently depending on the channel dimension:

  • 1D channel: greyscale image.
  • 2D channel: image with varying hue and saturation.
  • 3D channel: RGB image.

If specified, custom colormap functions can be used instead. For instance:

  • matplotlib.cm.* functions for 1D channel arrays (like matplotlib.cm.viridis)
  • colormap2d.* functions for 2D channel arrays (like colormap2d.pinwheel)
  • The matplotlib.colors.hsv_to_rgb function for 3D channel arrays.`

It assumes that values are floats between 0 and 1 or integers between 0 and 255 (values are clipped anyway). If specified, it automatically normalizes the values.

Why not directly use matplotlib.plt.imshow instead? If you have 2D array with 1 or 3-channel data and don't care about the size nor the incrusted axis in the returned image, matplotlib.plt.imshow is great. The Array2image library makes the focus on simplicity by guessing an appropriate way of rendering non-generic arrays.

Installation

pip install array2image

Requires python 3.10+.

Documentation

Function signature

def array_to_image(
    arr,
    spatial_dims: tuple[int, ...] | None = None,
    channel_dim: int | None = None,
    cmap: Callable | None = None,
    inverted_colors: bool = False,
    bin_size: int | tuple[int, int] | None = None,
    target_total_size: int = 200,
    grid_thickness: int | tuple[int, ...] = 0,
    norm: bool = False,
) -> PIL.Image

Argument description

  • arr: Array-like to be converted.
  • spatial_dims: Spatial dimensions of the array. If None, spatial dimensions are automatically guessed.
  • channel_dim: Channel dimension of the array. Only 1, 2 or 3 channel dimension arrays can be converted to an image. If None, the channel dimension is automatically guessed.
  • cmap: Colormap function to be used if provided. If None, default built-in functions are used.
  • inverted_colors: If True, inverts the color of the image.
  • bin_size: Number of pixels for each array spatial element. target_total_size: Target size of the image. Used to automatically choose bin_size if the latter is None.
  • grid_thickness: Tuple of grid thickness for each level of 2D spatial dimensions. By default, it is 0 for the last 2D dimensions and 2 pixels for the others.
  • norm: If True, normalize values between 0 and 1 with a min-max normalization.

Examples

1-channel arrays

Data for the following examples:

import numpy as np

# Random data: A 2x4x10x8 Numpy array with random values between 0 and 1
np.random.seed(0)
array = np.random.uniform(0, 1, (2, 4, 10, 8))

# MNIST data: The first 48 MNIST digits organized in a 6x8 grid.
mnist_data = ...
array = mnist_data[:48].reshape(6, 8, 28, 28)
Random MNIST
from array2image import array_to_image

# Represent only a 4D array
image = array_to_image(array)
from array2image import array_to_image

# Force 0 pixel for all grid levels
image = array_to_image(
  array, 
  grid_thickness=(0, 0)
)
from array2image import array_to_image

# Invert colors
image = array_to_image(
  array, 
  inverted_colors=True
)
from array2image import array_to_image
import matplotlib

# Use an external colormap
image = array_to_image(
  array,
  cmap=matplotlib.cm.viridis
)
from array2image import array_to_image
import matplotlib

# Represent only a 2D array
image = array_to_image(
  array[0, 0], 
  cmap=matplotlib.cm.viridis
)
from array2image import array_to_image
import matplotlib

# Show a grid
image = array_to_image(
  array[0, 0], 
  cmap=matplotlib.cm.viridis, 
  grid_thickness=1
)
from array2image import array_to_image

# Fix the bin size
image = array_to_image(
  array[0, 0], 
  bin_size=4
)
from array2image import array_to_image

# Fix a specific asymetric bin size
image = array_to_image(
  array[0, 0], 
  bin_size=(4,8)
)

2-channel arrays

Data for the following examples:

import numpy as np

# Random data: A 10x10x2 Numpy array with random values between 0 and 1
np.random.seed(0)
array = np.random.uniform(0, 1, (10, 10, 2))

# Dummy fourier data: linearly varying phase and magnitude over a 2D grid
phase, amplitude = np.meshgrid(np.linspace(0,1,10), np.meshgrid(np.linspace(0,1,10)))
array = np.stack((phase, amplitude), axis=-1)
Random Fourier
from array2image import array_to_image

# Default Hue/Saturation colormap
image = array_to_image(array)
from array2image import array_to_image
import colormap2d

# External 2D colormap
array_to_image(
  array, 
  cmap=colormap2d.pinwheel
)

3-channel arrays

Data for the following examples:

import numpy as np

# Random data: A 10x10x3 Numpy array with random values between 0 and 1
np.random.seed(0)
array = np.random.uniform(0, 1, (10, 10, 3))

# The Lena RGB image
image = Image.open("lena.png")
array = np.asarray(image)
Random Lena
from array2image import array_to_image

# Default RGB colormap
image = array_to_image(array)
from array2image import array_to_image
import matplotlib

# External 3D colormap
array_to_image(
  array, 
  cmap=matplotlib.colors.hsv_to_rgb
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

array2image-0.1.0.tar.gz (10.0 kB view details)

Uploaded Source

Built Distribution

array2image-0.1.0-py3-none-any.whl (10.8 kB view details)

Uploaded Python 3

File details

Details for the file array2image-0.1.0.tar.gz.

File metadata

  • Download URL: array2image-0.1.0.tar.gz
  • Upload date:
  • Size: 10.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: pdm/2.10.1 CPython/3.11.6

File hashes

Hashes for array2image-0.1.0.tar.gz
Algorithm Hash digest
SHA256 7bf1b2859bdedb0c64b0e888676a99369603f13bf1378f72ace029660e31df5d
MD5 2029348fd852f91ea6ecef9d54955d0c
BLAKE2b-256 846228546b060ed4824dcea3868df6b171d3319b727de7be7b00d6a433228151

See more details on using hashes here.

File details

Details for the file array2image-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: array2image-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 10.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: pdm/2.10.1 CPython/3.11.6

File hashes

Hashes for array2image-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 664f43f0dcd393e0df845254bc0f7c1b8e495058f36048c33f4248da13603830
MD5 6dcf0f77aa3191ee59b2639442258546
BLAKE2b-256 c0039fdd2bf5d60ab7f7adbbe6ed88ca642bca5b29f8146a59f82127c30a87f1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page