Skip to main content

Read the data of an ODBC data source as sequence of Apache Arrow record batches.

Project description

arrow-odbc-py

Licence PyPI version Documentation Status

Fill Apache Arrow arrays from ODBC data sources. This package is build on top of the pyarrow Python package and arrow-odbc Rust crate and enables you to read the data of an ODBC data source as sequence of Apache Arrow record batches.

  • Fast. Makes efficient use of ODBC bulk reads and writes, to lower IO overhead.
  • Flexible. Query any ODBC data source you have a driver for. MySQL, MS SQL, Excel, ...
  • Portable. Easy to install and update dependencies. No binary dependency to specific implemenations of Python interpreter, Arrow or ODBC driver manager.

About Arrow

Apache Arrow defines a language-independent columnar memory format for flat and hierarchical data, organized for efficient analytic operations on modern hardware like CPUs and GPUs. The Arrow memory format also supports zero-copy reads for lightning-fast data access without serialization overhead.

About ODBC

ODBC (Open DataBase Connectivity) is a standard which enables you to access data from a wide variaty of data sources using SQL.

Usage

Query

from arrow_odbc import read_arrow_batches_from_odbc

connection_string="Driver={ODBC Driver 17 for SQL Server};Server=localhost;"

reader = read_arrow_batches_from_odbc(
    query=f"SELECT * FROM MyTable WHERE a=?",
    connection_string=connection_string,
    parameters=["I'm a positional query parameter"],
    user="SA",
    password="My@Test@Password",
)

# Trade memory for speed. For the price of an additional transit buffer and a native system thread
# we fetch batches now concurrent to our application logic. Just remove this line, if you want to
# fetch sequentially in your main application thread.
reader.fetch_concurrently()

for batch in reader:
    # Process arrow batches
    df = batch.to_pandas()
    # ...

Insert

from arrow_odbc import insert_into_table
import pyarrow as pa
import pandas


def dataframe_to_table(df):
    table = pa.Table.from_pandas(df)
    reader = pa.RecordBatchReader.from_batches(table.schema, table.to_batches())
    insert_into_table(
        connection_string=connection_string,
        user="SA",
        password="My@Test@Password",
        chunk_size=1000,
        table="MyTable",
        reader=reader,
    )

Installation

Installing ODBC driver manager

The provided wheels dynamically link against the driver manager, which must be provided by the system.

Windows

Nothing to do. ODBC driver manager is preinstalled.

Ubuntu

sudo apt-get install unixodbc-dev

OS-X

You can use homebrew to install UnixODBC

brew install unixodbc

Installing the wheel

This package has been designed to be easily deployable, so it provides a prebuild many linux wheel which is independent of the specific version of your Python interpreter and the specific Arrow Version you want to use. It will dynamically link against the ODBC driver manager provided by your system.

Wheels have been uploaded to PyPi and can be installed using pip. The wheel (including the manylinux wheel) will link against the your system ODBC driver manager at runtime. If there are no prebuild wheels for your platform, you can build the wheel from source. For this the rust toolchain must be installed.

pip install arrow-odbc

arrow-odbc utilizes cffi and the Arrow C-Interface to glue Rust and Python code together. Therefore the wheel does not need to be build against the precise version either of Python or Arrow.

Installing with conda

conda install -c conda-forge arrow-odbc

Thanks to @timkpaine for maintaining the recipie!

Building wheel from source

There is no ready made wheel for the platform you want to target? Do not worry, you can probably build it from source.

  • To build from source you need to install the Rust toolchain. Installation instruction can be found here: https://www.rust-lang.org/tools/install

  • Install ODBC driver manager. See above.

  • Build wheel

    python -m pip install build
    python -m build
    

Building wheel from source on Mac ARM

Following above instruction on an Mac ARM will lead to the build process erroring out with a message that the odbc library can not be found for linkning. This is because brew chooses to install the library into a different folder on this platform. One way to fix this is to create a symbolic link.

sudo ln -s /opt/homebrew/lib /Users/your_user_name/lib

Using this addition step cargo from the rust build chain is able to find the odbc library and to link against it. Alternatively you can install unixODBC from source using make.

Matching of ODBC to Arrow types then querying

ODBC Arrow
Numeric(p <= 38) Decimal128
Decimal(p <= 38, s >= 0) Decimal128
Integer Int32
SmallInt Int16
Real Float32
Float(p <=24) Float32
Double Float64
Float(p > 24) Float64
Date Date32
LongVarbinary Binary
Timestamp(p = 0) TimestampSecond
Timestamp(p: 1..3) TimestampMilliSecond
Timestamp(p: 4..6) TimestampMicroSecond
Timestamp(p >= 7 ) TimestampNanoSecond
BigInt Int64
TinyInt Int8
Bit Boolean
Varbinary Binary
Binary FixedSizedBinary
All others Utf8

Matching of Arrow to ODBC types then inserting

Arrow ODBC
Utf8 VarChar
Decimal128(p, s = 0) VarChar(p + 1)
Decimal128(p, s != 0) VarChar(p + 2)
Decimal128(p, s < 0) VarChar(p - s + 1)
Decimal256(p, s = 0) VarChar(p + 1)
Decimal256(p, s != 0) VarChar(p + 2)
Decimal256(p, s < 0) VarChar(p - s + 1)
Int8 TinyInt
Int16 SmallInt
Int32 Integer
Int64 BigInt
Float16 Real
Float32 Real
Float64 Double
Timestamp s Timestamp(7)
Timestamp ms Timestamp(7)
Timestamp us Timestamp(7)
Timestamp ns Timestamp(7)
Date32 Date
Date64 Date
Time32 s Time
Time32 ms VarChar(12)
Time64 us VarChar(15)
Time64 ns VarChar(16)
Binary Varbinary
FixedBinary(l) Varbinary(l)
All others Unsupported

Comparision to other Python ODBC bindings

  • pyodbc - General purpose ODBC python bindings. In contrast arrow-odbc is specifically concerned with bulk reads and writes to arrow arrays.
  • turbodbc - Complies with the Python Database API Specification 2.0 (PEP 249) which arrow-odbc does not aim to do. Like arrow-odbc bulk read and writes is the strong point of turbodbc. turbodbc has more system dependencies, which can make it cumbersome to install if not using conda. turbodbc is build against the C++ implementation of Arrow, which implies it is only compatible with matching version of pyarrow.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

arrow_odbc-3.0.0.tar.gz (52.0 kB view details)

Uploaded Source

Built Distributions

arrow_odbc-3.0.0-py3-none-win_amd64.whl (429.6 kB view details)

Uploaded Python 3 Windows x86-64

arrow_odbc-3.0.0-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded Python 3 manylinux: glibc 2.17+ x86-64

arrow_odbc-3.0.0-py3-none-macosx_10_12_x86_64.whl (604.6 kB view details)

Uploaded Python 3 macOS 10.12+ x86-64

File details

Details for the file arrow_odbc-3.0.0.tar.gz.

File metadata

  • Download URL: arrow_odbc-3.0.0.tar.gz
  • Upload date:
  • Size: 52.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for arrow_odbc-3.0.0.tar.gz
Algorithm Hash digest
SHA256 f046e4ed57fca534679c9f61136ef78be97a45346df6a4cd8327f6ab478b74d9
MD5 e075c0d817f600909378c255fbba4bad
BLAKE2b-256 f0fce7d14bb5bb10be84ab6ce38f31ae17e527c2c19be551ab05fc4991888a5c

See more details on using hashes here.

File details

Details for the file arrow_odbc-3.0.0-py3-none-win_amd64.whl.

File metadata

  • Download URL: arrow_odbc-3.0.0-py3-none-win_amd64.whl
  • Upload date:
  • Size: 429.6 kB
  • Tags: Python 3, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for arrow_odbc-3.0.0-py3-none-win_amd64.whl
Algorithm Hash digest
SHA256 0ec94ae6b3542e2e0b05acb97c8525c1b8692a3d7e7b99299dbf0726670ddde6
MD5 73d5b50ed17985caf96a58ce12bfa7b2
BLAKE2b-256 171cbc30cffcf84d961e1f35e80d939f595a0eddadeaeed30e44fdc57956ff79

See more details on using hashes here.

File details

Details for the file arrow_odbc-3.0.0-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arrow_odbc-3.0.0-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4607defc1666dc936c1a205e55c383fbf49632b05b2744b09032f005fb3c1fc8
MD5 ba7b133b09ceba554ab7b5ee8ed35744
BLAKE2b-256 7757c8e88f11e88ec91f6cd2e396ae9b53ed46583a12d1a8d2bb1c1f0ecefb30

See more details on using hashes here.

File details

Details for the file arrow_odbc-3.0.0-py3-none-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for arrow_odbc-3.0.0-py3-none-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 59c0e2ada63c3a22580a9d7f3c7416060a86602d483c8aa52167d7426721d494
MD5 f9c3bff711c7fdae39ebba2f8c6d980c
BLAKE2b-256 13032dbb00336b55e8bd8eb920067a771c177529d907be2b06e16f10d8ff43e1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page