Skip to main content

Read the data of an ODBC data source as sequence of Apache Arrow record batches.

Project description

arrow-odbc-py

Licence PyPI version Documentation Status

Fill Apache Arrow arrays from ODBC data sources. This package is build on top of the pyarrow Python package and arrow-odbc Rust crate and enables you to read the data of an ODBC data source as sequence of Apache Arrow record batches.

  • Fast. Makes efficient use of ODBC bulk reads and writes, to lower IO overhead.
  • Flexible. Query any ODBC data source you have a driver for. MySQL, MS SQL, Excel, ...
  • Portable. Easy to install and update dependencies. No binary dependency to specific implemenations of Python interpreter, Arrow or ODBC driver manager.

About Arrow

Apache Arrow defines a language-independent columnar memory format for flat and hierarchical data, organized for efficient analytic operations on modern hardware like CPUs and GPUs. The Arrow memory format also supports zero-copy reads for lightning-fast data access without serialization overhead.

About ODBC

ODBC (Open DataBase Connectivity) is a standard which enables you to access data from a wide variaty of data sources using SQL.

Usage

Query

from arrow_odbc import read_arrow_batches_from_odbc

connection_string="Driver={ODBC Driver 17 for SQL Server};Server=localhost;"

reader = read_arrow_batches_from_odbc(
    query=f"SELECT * FROM MyTable WHERE a=?",
    connection_string=connection_string,
    parameters=["I'm a positional query parameter"],
    user="SA",
    password="My@Test@Password",
)

# Trade memory for speed. For the price of an additional transit buffer and a native system thread
# we fetch batches now concurrent to our application logic. Just remove this line, if you want to
# fetch sequentially in your main application thread.
reader.fetch_concurrently()

for batch in reader:
    # Process arrow batches
    df = batch.to_pandas()
    # ...

Insert

from arrow_odbc import insert_into_table
import pyarrow as pa
import pandas


def dataframe_to_table(df):
    table = pa.Table.from_pandas(df)
    reader = pa.RecordBatchReader.from_batches(table.schema, table.to_batches())
    insert_into_table(
        connection_string=connection_string,
        user="SA",
        password="My@Test@Password",
        chunk_size=1000,
        table="MyTable",
        reader=reader,
    )

Installation

Installing ODBC driver manager

The provided wheels dynamically link against the driver manager, which must be provided by the system.

Windows

Nothing to do. ODBC driver manager is preinstalled.

Ubuntu

sudo apt-get install unixodbc-dev

OS-X

You can use homebrew to install UnixODBC

brew install unixodbc

Installing the wheel

This package has been designed to be easily deployable, so it provides a prebuild many linux wheel which is independent of the specific version of your Python interpreter and the specific Arrow Version you want to use. It will dynamically link against the ODBC driver manager provided by your system.

Wheels have been uploaded to PyPi and can be installed using pip. The wheel (including the manylinux wheel) will link against the your system ODBC driver manager at runtime. If there are no prebuild wheels for your platform, you can build the wheel from source. For this the rust toolchain must be installed.

pip install arrow-odbc

arrow-odbc utilizes cffi and the Arrow C-Interface to glue Rust and Python code together. Therefore the wheel does not need to be build against the precise version either of Python or Arrow.

Installing with conda

conda install -c conda-forge arrow-odbc

Thanks to @timkpaine for maintaining the recipie!

Building wheel from source

There is no ready made wheel for the platform you want to target? Do not worry, you can probably build it from source.

  • To build from source you need to install the Rust toolchain. Installation instruction can be found here: https://www.rust-lang.org/tools/install

  • Install ODBC driver manager. See above.

  • Build wheel

    python -m pip install build
    python -m build
    

Matching of ODBC to Arrow types then querying

ODBC Arrow
Numeric(p <= 38) Decimal128
Decimal(p <= 38, s >= 0) Decimal128
Integer Int32
SmallInt Int16
Real Float32
Float(p <=24) Float32
Double Float64
Float(p > 24) Float64
Date Date32
LongVarbinary Binary
Timestamp(p = 0) TimestampSecond
Timestamp(p: 1..3) TimestampMilliSecond
Timestamp(p: 4..6) TimestampMicroSecond
Timestamp(p >= 7 ) TimestampNanoSecond
BigInt Int64
TinyInt Signed Int8
TinyInt Unsigned UInt8
Bit Boolean
Varbinary Binary
Binary FixedSizedBinary
All others Utf8

Matching of Arrow to ODBC types then inserting

Arrow ODBC
Utf8 VarChar
Decimal128(p, s = 0) VarChar(p + 1)
Decimal128(p, s != 0) VarChar(p + 2)
Decimal128(p, s < 0) VarChar(p - s + 1)
Decimal256(p, s = 0) VarChar(p + 1)
Decimal256(p, s != 0) VarChar(p + 2)
Decimal256(p, s < 0) VarChar(p - s + 1)
Int8 TinyInt
Int16 SmallInt
Int32 Integer
Int64 BigInt
Float16 Real
Float32 Real
Float64 Double
Timestamp s Timestamp(7)
Timestamp ms Timestamp(7)
Timestamp us Timestamp(7)
Timestamp ns Timestamp(7)
Date32 Date
Date64 Date
Time32 s Time
Time32 ms VarChar(12)
Time64 us VarChar(15)
Time64 ns VarChar(16)
Binary Varbinary
FixedBinary(l) Varbinary(l)
All others Unsupported

Comparision to other Python ODBC bindings

  • pyodbc - General purpose ODBC python bindings. In contrast arrow-odbc is specifically concerned with bulk reads and writes to arrow arrays.
  • turbodbc - Complies with the Python Database API Specification 2.0 (PEP 249) which arrow-odbc does not aim to do. Like arrow-odbc bulk read and writes is the strong point of turbodbc. turbodbc has more system dependencies, which can make it cumbersome to install if not using conda. turbodbc is build against the C++ implementation of Arrow, which implies it is only compatible with matching version of pyarrow.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

arrow_odbc-7.0.6.tar.gz (57.0 kB view details)

Uploaded Source

Built Distributions

arrow_odbc-7.0.6-py3-none-win_amd64.whl (418.0 kB view details)

Uploaded Python 3 Windows x86-64

arrow_odbc-7.0.6-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (611.4 kB view details)

Uploaded Python 3 manylinux: glibc 2.17+ x86-64

arrow_odbc-7.0.6-py3-none-macosx_10_12_x86_64.whl (554.8 kB view details)

Uploaded Python 3 macOS 10.12+ x86-64

File details

Details for the file arrow_odbc-7.0.6.tar.gz.

File metadata

  • Download URL: arrow_odbc-7.0.6.tar.gz
  • Upload date:
  • Size: 57.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for arrow_odbc-7.0.6.tar.gz
Algorithm Hash digest
SHA256 859e965b43e069650a1d846d45ef04c747b92e8b2e5ff79394a808363f273b54
MD5 06aada70b84756728be38fc645b5c0d6
BLAKE2b-256 31fdb8b2005600456f6c259411b4aa125027ff00caf3d909980c60a17f1c7ba5

See more details on using hashes here.

File details

Details for the file arrow_odbc-7.0.6-py3-none-win_amd64.whl.

File metadata

  • Download URL: arrow_odbc-7.0.6-py3-none-win_amd64.whl
  • Upload date:
  • Size: 418.0 kB
  • Tags: Python 3, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for arrow_odbc-7.0.6-py3-none-win_amd64.whl
Algorithm Hash digest
SHA256 fa7eecd0cbdf849d538f3ee97e34be266bc1be5e7632f8079a06d4910bdc9682
MD5 0c9a73d213d2884122fcc284696ab717
BLAKE2b-256 921d0d3be423215c44c143870a395f7e56a93ce116dc6f60b8daf5cddeb01b57

See more details on using hashes here.

File details

Details for the file arrow_odbc-7.0.6-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arrow_odbc-7.0.6-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7af4c9b67979bb344c7528b46b58c9a23253214b26dfbb6bf4ec03731eacb119
MD5 bebd21cd920bd285f870ddd58db0662e
BLAKE2b-256 866789a327ada0970779c2cbda6b8d5ba62b297843b5e9bbeff7f963ed87a4a3

See more details on using hashes here.

File details

Details for the file arrow_odbc-7.0.6-py3-none-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for arrow_odbc-7.0.6-py3-none-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 a57fe4eeb7b0c814a3f2ba281dd470fde46f70d3af7a5d42e192a746ce8d8241
MD5 7dcda76ccc70fb9711e39aeea3525f3e
BLAKE2b-256 13e851a8498307555f12fbe4c52d96a22e7f0a632f47f3db55eda2451f4a007d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page