Skip to main content

Platform for robust design optimization

Project description

Ārtap

Ārtap is a framework for robust design optimization in Python. It contains an integrated, multi-physical FEM solver: Agros suite, furthermore it provides simple interfaces for commercial FEM solvers (COMSOL) and meta-heuristic, bayesian or neural network based optimization algorithms surrogate modelling techniques and neural networks.

Installation

Artap and its dependencies are available as wheel packages for Windows and Linux* distributions: We recommend to install Artap under a virtual environment.

pip install --upgrade pip # make sure that pip is reasonably new
pip install artap

*The Windows versions are only partially, the linux packages are fully supported at the current version.

Linux

You can install the full package, which contains the agrossuite package by the following command:

pip install --upgrade pip # make sure that pip is reasonably new
pip install artap[full]

Basic usage

The goal of this example to show, how we can use Artap to solve a simple, bi-objective optimization problem.

The problem is defined in the following way [GDE3]:

Minimize f1 = x1
Minimize f2 = (1+x2) / x1

subject to
        x1 e [0.1, 1]
        x2 e [0, 5]

The Pareto - front of the following problem is known, it is a simple hyperbola. This problem is very simple for an Evolutionary algorithm, it finds its solution within 20-30 generations. NSGA - II algorithm is used to solve this example.

The Problem definition and solution with NSGA-II in Ārtap:

class BiObjectiveTestProblem(Problem):

    def set(self):

        self.name = 'Biobjective Test Problem'
        
        self.parameters = [{'name':'x_1', 'bounds': [0.1, 1.]},
                           {'name':'x_2', 'bounds': [0.0, 5.0]}]

        self.costs = [{'name': 'f_1', 'criteria': 'minimize'},
                      {'name': 'f_2', 'criteria': 'minimize'}]

    def evaluate(self, individual):
        f1 = individual.vector[0]
        f2 = (1+individual.vector[1])/individual.vector[0]
    return [f1, f2]

# Perform the optimization iterating over 100 times on 100 individuals.
problem = BiObjectiveTestProblem()
algorithm = NSGAII(problem)
algorithm.options['max_population_number'] = 100
algorithm.options['max_population_size'] = 100
algorithm.run()

References

  • [GDE3] Saku Kukkonen, Jouni Lampinen, The third Evolution Step of Generalized Differential Evolution

Citing

If you use Ārtap in your research, the developers would be grateful if you would cite the relevant publications:

[1] Karban, Pavel, David Pánek, Tamás Orosz, Iveta Petrášová, and Ivo Doležel. “FEM based robust design optimization with Agros and Ārtap.” Computers & Mathematics with Applications (2020) https://doi.org/10.1016/j.camwa.2020.02.010.

[2] Pánek, David, Tamás Orosz, and Pavel Karban. ” Ārtap: robust design optimization framework for engineering applications.” arXiv preprint arXiv:1912.11550 (2019).

Applications

[3] Karban, P., Pánek, D., & Doležel, I. (2018). Model of induction brazing of nonmagnetic metals using model order reduction approach. COMPEL-The international journal for computation and mathematics in electrical and electronic engineering, 37(4), 1515-1524, https://doi.org/10.1108/COMPEL-08-2017-0356.

[4] Pánek, D., Orosz, T., Kropík, P., Karban, P., & Doležel, I. (2019, June). Reduced-Order Model Based Temperature Control of Induction Brazing Process. In 2019 Electric Power Quality and Supply Reliability Conference (PQ) & 2019 Symposium on Electrical Engineering and Mechatronics (SEEM) (pp. 1-4). IEEE, https://doi.org/10.1109/PQ.2019.8818256.

[5] Pánek, D., Karban, P., & Doležel, I. (2019). Calibration of Numerical Model of Magnetic Induction Brazing. IEEE Transactions on Magnetics, 55(6), 1-4, https://doi.org/10.1109/TMAG.2019.2897571.

[6] Pánek, D., Orosz, T., Karban, P., & Doležel, I. (2020), “Comparison of simplified techniques for solving selected coupled electroheat problems”, COMPEL – The international journal for computation and mathematics in electrical and electronic engineering, Vol. 39 No. 1, pp. 220-230. https://doi.org/10.1108/COMPEL-06-2019-0244

[7] Orosz, T.; Pánek, D.; Karban, P. FEM Based Preliminary Design Optimization in Case of Large Power Transformers. Appl. Sci. 2020, 10, 1361, https://doi.org/10.3390/app10041361.

Contact

If you have any questions, do not hesitate to contact us: artap.framework@gmail.com

License

Ārtap is published under MIT license

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

artap-2024.2.19.3045.tar.gz (326.1 kB view details)

Uploaded Source

Built Distribution

artap-2024.2.19.3045-py3-none-any.whl (356.8 kB view details)

Uploaded Python 3

File details

Details for the file artap-2024.2.19.3045.tar.gz.

File metadata

  • Download URL: artap-2024.2.19.3045.tar.gz
  • Upload date:
  • Size: 326.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for artap-2024.2.19.3045.tar.gz
Algorithm Hash digest
SHA256 d001820ef69284f722cdf0c60915bb4378688597aa165f3ca05838c12c233aed
MD5 89a874566bce0167a635fedf2fd66d68
BLAKE2b-256 87c274e5960ce156ae428f13f6bc8833d4172b26fc68509505bce20f0f70227b

See more details on using hashes here.

File details

Details for the file artap-2024.2.19.3045-py3-none-any.whl.

File metadata

File hashes

Hashes for artap-2024.2.19.3045-py3-none-any.whl
Algorithm Hash digest
SHA256 1cdce581a4c29b9dfdb2103636d136f4488f78fc5c49d8675dd5bf6e8e03cdc2
MD5 f3aa170004a526efbed30561ca5cd2b6
BLAKE2b-256 4dcf03680ce522fb16514720e04ca2ba4bede234e2a046dd4eed23811ff50022

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page