Skip to main content

Python library for scraping with Selenium.

Project description

as-scraper

PyPI - Python Version PyPI - Downloads

Python library for scraping using Selenium

If you are looking for the library implemented inside airflow, go to https://github.com/Avila-Systems/as-scraper-airflow.

Installation

The as-scraper library uses Geckodriver (Firefox) for scraping with the Selenium library. In order to use it, you need to have an Geckodriver dependency. Check the selenium documentation for details about how to install the Firefox browser driver.

Usage

Creating a simple scraper

Lets say that we want to scrap yellowpages.com. Our target data would be the popular cities that we can find in the sitemap url.

Our output data will have two columns: name of the city and url which is linked to the city. For example, for Houston, we would want the following output:

name url
Houston https://www.yellowpages.com/houston-tx

Declaring our Scraper Class

So first we create a scraper that extends from the Scraper class, and define the COLUMNS variable to ['name', 'url'].

Create the scrapers/yellowpages.py file and type the following code into it:

from as_scraper.scraper import Scraper


class YellowPagesScraper(Scraper):
    COLUMNS = ['name', 'url']

Deciding wether to load javascript or not

Now, there are two execution options when running scrapers. We can either load javascript which uses the Selenium library, or not load javascript and use the requests library for http requests.

For this example, let's go ahead and use the Selenium library. To configure this, simply add the following variable to your scraper:

from as_scraper.scraper import Scraper


class YellowPagesScraper(Scraper):
    COLUMNS = ['name', 'url']
    LOAD_JAVASCRIPT = True

Defining the scrape_handler

And the magic comes in the next step. We will define the scrape_handler method in our class, which will have the responsibility to scrape a given url and extract the data from it.

All scrapers must define the scrape_handler method.

from typing import Optional
from selenium.webdriver import Firefox
from selenium.webdriver.common.by import By
import pandas as pd
from as_scraper.scraper import Scraper


class YellowPagesScraper(Scraper):
    COLUMNS = ['name', 'url']
    LOAD_JAVASCRIPT = True

    def scrape_handler(self, url: str, html: Optional[str] = None, driver: Optional[Firefox] = None, **kwargs) -> pd.DataFrame:
        rows = []
        div_tag = driver.find_element(By.CLASS_NAME, "row-content")
        div_tag = div_tag.find_element(By.CLASS_NAME, "row")
        section_tags = div_tag.find_elements(By.TAG_NAME, "section")
        for section_tag in section_tags:
            a_tags = section_tag.find_elements(By.TAG_NAME, "a")
            for a_tag in a_tags:
                city_name = a_tag.text
                city_url = a_tag.get_attribute("href")
                rows.append({"name": city_name, "url": city_url})
        df = pd.DataFrame(rows, columns=self.COLUMNS)
        return df

Execution

Finally, to execute the scraper you must call the *execute method.

from typing import Optional
from selenium.webdriver import Firefox
from selenium.webdriver.common.by import By
import pandas as pd
from as_scraper.scraper import Scraper

class YellowPagesScraper(Scraper):
    COLUMNS = ['name', 'url']
    LOAD_JAVASCRIPT = True

    def scrape_handler(self, url: str, html: Optional[str] = None, driver: Optional[Firefox] = None, **kwargs) -> pd.DataFrame:
        rows = []
        div_tag = driver.find_element(By.CLASS_NAME, "row-content")
        div_tag = div_tag.find_element(By.CLASS_NAME, "row")
        section_tags = div_tag.find_elements(By.TAG_NAME, "section")
        for section_tag in section_tags:
            a_tags = section_tag.find_elements(By.TAG_NAME, "a")
            for a_tag in a_tags:
                city_name = a_tag.text
                city_url = a_tag.get_attribute("href")
                rows.append({"name": city_name, "url": city_url})
        df = pd.DataFrame(rows, columns=self.COLUMNS)
        return df

if __name__ == '__main__':
    urls = ['https://www.yellowpages.com/sitemap']
    scraper = YellowPagesScraper(urls)
    results, errors = scraper.execute()
    print(results)
    print(errors)

Now go ahead and run python scrapers/yellowpages.py. Have fun!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

as-scraper-2.4.1.tar.gz (9.2 kB view details)

Uploaded Source

Built Distribution

as_scraper-2.4.1-py3-none-any.whl (9.4 kB view details)

Uploaded Python 3

File details

Details for the file as-scraper-2.4.1.tar.gz.

File metadata

  • Download URL: as-scraper-2.4.1.tar.gz
  • Upload date:
  • Size: 9.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for as-scraper-2.4.1.tar.gz
Algorithm Hash digest
SHA256 1b0480f0ea01be19585eb45dd89eda36a560e2c2c157f20f0a80d00ba6ac0897
MD5 c3c3f0689fd5ad08324614b330a88b60
BLAKE2b-256 2aa33d5500c30822af89cd340383ce250659dedef7f014f86616c33e67a618b7

See more details on using hashes here.

File details

Details for the file as_scraper-2.4.1-py3-none-any.whl.

File metadata

  • Download URL: as_scraper-2.4.1-py3-none-any.whl
  • Upload date:
  • Size: 9.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for as_scraper-2.4.1-py3-none-any.whl
Algorithm Hash digest
SHA256 a78023333ce87eb3b4a5a4a3a55f2c3dad770f35d68b3f3abc5e1886d85c2533
MD5 369771db18147714c35e4ea16b2b1369
BLAKE2b-256 7c86239da60c5aa8735f599d3f2c0c661dfc8bfeae7ff84c84a1b5a8d4f15f71

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page