Skip to main content

Package for the segmentation of autosimilarity matrices. This version is related to a stable vesion on PyPi, for installation in MSAF.

Project description

as_seg: module for computing and segmenting autosimilarity matrices.

Hello, and welcome on this repository!

This project aims at computing autosimilarity matrices, and segmenting them, which consists of the task of structural segmentation.

The current version contains the CBM algorithm [1], along with an implementation of Foote's novelty algorithm [2] based on the MSAF toolbox [3].

It can be installed using pip as pip install as-seg.

This is a first release, and may contain bug. Comments are welcomed!

Tutorial notebook

A tutorial notebook presenting the most important components of this toolbox is available in the folder "Notebooks".

Experimental notebook

Experimental notebooks are available in the folder "Notebooks". They present the code used to compute the main experiments of the paper, in order to improve the reproducibility. Please tell me if any problem would appear when trying to launch them.

Experimental Notebooks requires some pre-computed data to work, which can be found on zenodo: https://zenodo.org/records/10168387. DOI: 10.5281/zenodo.10168386.

Data

Should be obtained from Zenodo: https://zenodo.org/records/10168387. DOI: 10.5281/zenodo.10168386.

Software version

This code was developed with Python 3.8.5, and some external libraries detailed in dependencies.txt. They should be installed automatically if this project is downloaded using pip.

How to cite

You should cite the package as_seg, available on HAL (https://hal.archives-ouvertes.fr/hal-03797507).

Here are two styles of citations:

As a bibtex format, this should be cited as: @softwareversion{marmoret2022as_seg, title={as_seg: module for computing and segmenting autosimilarity matrices}, author={Marmoret, Axel and Cohen, J{'e}r{'e}my and Bimbot, Fr{'e}d{'e}ric}, LICENSE = {BSD 3-Clause ''New'' or ''Revised'' License}, year={2022}}

In the IEEE style, this should be cited as: A. Marmoret, J.E. Cohen, and F. Bimbot, "as_seg: module for computing and segmenting autosimilarity matrices," 2022, url: https://gitlab.inria.fr/amarmore/autosimilarity_segmentation.

Credits

Code was created by Axel Marmoret (axel.marmoret@gmail.com), and strongly supported by Jeremy E. Cohen (jeremy.cohen@cnrs.fr).

The technique in itself was also developed by Frédéric Bimbot (bimbot@irisa.fr).

References

[1] A. Marmoret, J.E. Cohen, F. Bimbot. Barwise Music Structure Analysis with the Correlation Block-Matching Segmentation Algorithm. Transactions of the International Society for Music Information Retrieval (TISMIR), 2023, 6 (1), pp.167-185. ⟨10.5334/tismir.167⟩. ⟨hal-04323556⟩, https://hal.science/hal-04323556.

[2] J. Foote, "Automatic audio segmentation using a measure of audio novelty," in: 2000 IEEE Int. Conf. Multimedia and Expo. ICME2000. Proc. Latest Advances in the Fast Changing World of Multimedia, vol. 1, IEEE, 2000, pp. 452–455.

[3] Nieto, O., Bello, J. P., Systematic Exploration Of Computational Music Structure Research. Proc. of the 17th International Society for Music Information Retrieval Conference (ISMIR). New York City, NY, USA, 2016.

[4] Böck, S., Korzeniowski, F., Schlüter, J., Krebs, F., & Widmer, G. (2016, October). Madmom: A new python audio and music signal processing library. In Proceedings of the 24th ACM international conference on Multimedia (pp. 1174-1178).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

as_seg-0.1.7.tar.gz (39.7 kB view details)

Uploaded Source

Built Distribution

as_seg-0.1.7-py3-none-any.whl (43.0 kB view details)

Uploaded Python 3

File details

Details for the file as_seg-0.1.7.tar.gz.

File metadata

  • Download URL: as_seg-0.1.7.tar.gz
  • Upload date:
  • Size: 39.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.12

File hashes

Hashes for as_seg-0.1.7.tar.gz
Algorithm Hash digest
SHA256 0be766fa248b4c5430429d83271862b040ad0d328d10ec09aa0c0717606fec1e
MD5 3cff666c14a91ce0129cf794f5b0fcaf
BLAKE2b-256 efd499456e3d43ff67bd7a19f0f70978454b35676ac1f7f3e64f490ac8676d20

See more details on using hashes here.

File details

Details for the file as_seg-0.1.7-py3-none-any.whl.

File metadata

  • Download URL: as_seg-0.1.7-py3-none-any.whl
  • Upload date:
  • Size: 43.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.12

File hashes

Hashes for as_seg-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 ae7958468b65ce0c887a952957b1ae0ac8f2e3e0f6042a9e6b98ea01b3a5fda6
MD5 7462f876392748950904228c2635f91c
BLAKE2b-256 9ff7d0852f7eb73f9c4b9ef22b4287717d669e599b39133142c126ced36423b5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page