Skip to main content

ASAM MDF measurement data file parser

Project description

asammdf is a fast parser/editor for ASAM (Associtation for Standardisation of Automation and Measuring Systems) MDF (Measurement Data Format) files.

asammdf supports both MDF version 3 and 4 formats.

asammdf works on Python 2.7, and Python >= 3.4

Project goals

The main goals for this library are:

  • to be faster than the other Python based mdf libraries

  • to have clean and easy to understand code base

  • to have minimal 3-rd party dependencies

Features

  • create new mdf files from scratch

  • append new channels

  • read unsorted MDF v3 and v4 files

  • filter a subset of channels from original mdf file

  • cut measurement to specified time interval

  • convert to different mdf version

  • export to Excel, HDF5, Matlab and CSV

  • merge multiple files sharing the same internal structure

  • read and save mdf version 4.10 files containing zipped data blocks

  • full support (read, append, save) for the following map types (multidimensional array channels):

    • mdf version 3 channels with CDBLOCK

    • mdf version 4 structure channel composition

    • mdf version 4 channel arrays with CNTemplate storage and one of the array types:

      • 0 - array

      • 1 - scaling axis

      • 2 - look-up

  • add and extract attachments for mdf version 4

  • files are loaded in RAM for fast operations

  • handle large files (exceeding the available RAM) using load_measured_data = False argument

  • extract channel data, master channel and extra channel information as Signal objects for unified operations with v3 and v4 files

  • time domain operation using the Signal class

    • Pandas data frames are good if all the channels have the same time based

    • usually a measurement will have channels from different sources at different rates

    • the Signal class facilitates operations with such channels

Major features not implemented (yet)

  • for version 3

    • functionality related to sample reduction block (but the class is defined)

  • for version 4

    • handling of bus logging measurements

    • handling of unfinnished measurements (mdf 4)

    • full support mdf 4 channel arrays

    • xml schema for TXBLOCK and MDBLOCK

    • partial conversions

    • event blocks

Usage

from asammdf import MDF

mdf = MDF('sample.mdf')
speed = mdf.get('WheelSpeed')
speed.plot()

important_signals = ['WheelSpeed', 'VehicleSpeed', 'VehicleAcceleration']
# get short measurement with a subset of channels from 10s to 12s
short = mdf.filter(important_signals).cut(start=10, stop=12)

# convert to version 4.10 and save to disk
short.convert('4.10').save('important signals.mf4')

Check the examples folder for extended usage demo.

Documentation

http://asammdf.readthedocs.io/en/latest

Installation

asammdf is available on

Dependencies

asammdf uses the following libraries

  • numpy : the heart that makes all tick

  • numexpr : for algebraic and rational channel conversions

  • matplotlib : for Signal plotting

  • wheel : for installation in virtual environments

optional dependencies needed for exports

  • pandas : for DataFrame export

  • h5py : for HDF5 export

  • xlsxwriter : for Excel export

  • scipy : for Matlab .mat export

Benchmarks

Python 3 x86

Benchmark environment

  • 3.6.1 (v3.6.1:69c0db5, Mar 21 2017, 17:54:52) [MSC v.1900 32 bit (Intel)]

  • Windows-10-10.0.14393-SP0

  • Intel64 Family 6 Model 94 Stepping 3, GenuineIntel

  • 16GB installed RAM

Notations used in the results

  • nodata = asammdf MDF object created with load_measured_data=False (raw channel data not loaded into RAM)

  • compress = mdfreader mdf object created with compression=blosc

  • compression bcolz 6 = mdfreader mdf object created with compression=6

  • noDataLoading = mdfreader mdf object read with noDataLoading=True

Files used for benchmark:

  • 183 groups

  • 36424 channels

Open file

Time [ms]

RAM [MB]

asammdf 2.6.3 mdfv3

951

286

asammdf 2.6.3 nodata mdfv3

639

118

mdfreader 0.2.6 mdfv3

3490

458

mdfreader 0.2.6 compress mdfv3

4624

185

mdfreader 0.2.6 compress bcolz 6 mdfv3

4654

941

mdfreader 0.2.6 noDataLoading mdfv3

1884

120

asammdf 2.6.3 mdfv4

2251

330

asammdf 2.6.3 nodata mdfv4

1791

150

mdfreader 0.2.6 mdfv4

6447

869

mdfreader 0.2.6 compress mdfv4

7549

586

mdfreader 0.2.6 compress bcolz 6 mdfv4

7730

1294

mdfreader 0.2.6 noDataLoading mdfv4

4553

522

Save file

Time [ms]

RAM [MB]

asammdf 2.6.3 mdfv3

448

290

asammdf 2.6.3 nodata mdfv3

467

125

mdfreader 0.2.6 mdfv3

8992

481

mdfreader 0.2.6 compress mdfv3

9228

452

mdfreader 0.2.6 compress bcolz 6 mdfv3

8751

941

asammdf 2.6.3 mdfv4

630

334

asammdf 2.6.3 nodata mdfv4

628

159

mdfreader 0.2.6 mdfv4

6880

891

mdfreader 0.2.6 compress mdfv4

7101

852

mdfreader 0.2.6 compress bcolz6 mdfv4

6839

1311

Get all channels (36424 calls)

Time [ms]

RAM [MB]

asammdf 2.6.3 mdfv3

779

291

asammdf 2.6.3 nodata mdfv3

18127

128

mdfreader 0.2.6 mdfv3

80

458

mdfreader 0.2.6 noDataLoading mdfv3

18000000

118

mdfreader 0.2.6 compress mdfv3

684

187

mdfreader 0.2.6 compress bcolz 6 mdfv3

298

942

asammdf 2.6.3 mdfv4

801

335

asammdf 2.6.3 nodata mdfv4

25176

157

mdfreader 0.2.6 mdfv4

78

870

mdfreader 0.2.6 noDataLoading mdfv4

18000000

523

mdfreader 0.2.6 compress mdfv4

686

593

mdfreader 0.2.6 compress bcolz 6 mdfv4

319

1301

Convert file

Time [ms]

RAM [MB]

asammdf 2.6.3 v3 to v4

5884

682

asammdf 2.6.3 v3 to v4 nodata

27892

479

asammdf 2.6.3 v4 to v3

5836

680

asammdf 2.6.3 v4 to v3 nodata

35283

627

Merge files

Time [ms]

RAM [MB]

asammdf 2.6.3 v3

13305

1228

asammdf 2.6.3 v3 nodata

52775

346

asammdf 2.6.3 v4

16069

1267

asammdf 2.6.3 v4 nodata

70402

364

Python 3 x64

Benchmark environment

  • 3.6.2 (v3.6.2:5fd33b5, Jul 8 2017, 04:57:36) [MSC v.1900 64 bit (AMD64)]

  • Windows-10-10.0.14393-SP0

  • Intel64 Family 6 Model 94 Stepping 3, GenuineIntel

  • 16GB installed RAM

Notations used in the results

  • nodata = asammdf MDF object created with load_measured_data=False (raw channel data not loaded into RAM)

  • compress = mdfreader mdf object created with compression=blosc

  • compression bcolz 6 = mdfreader mdf object created with compression=6

  • noDataLoading = mdfreader mdf object read with noDataLoading=True

Files used for benchmark:

  • 183 groups

  • 36424 channels

Open file

Time [ms]

RAM [MB]

asammdf 2.6.3 mdfv3

792

364

asammdf 2.6.3 nodata mdfv3

568

188

mdfreader 0.2.6 mdfv3

2693

545

mdfreader 0.2.6 compress mdfv3

3855

267

mdfreader 0.2.6 compress bcolz 6 mdfv3

3865

1040

mdfreader 0.2.6 noDataLoading mdfv3

1438

199

asammdf 2.6.3 mdfv4

1866

435

asammdf 2.6.3 nodata mdfv4

1480

244

mdfreader 0.2.6 mdfv4

5394

1307

mdfreader 0.2.6 compress mdfv4

6541

1023

mdfreader 0.2.6 compress bcolz 6 mdfv4

6670

1746

mdfreader 0.2.6 noDataLoading mdfv4

3940

944

Save file

Time [ms]

RAM [MB]

asammdf 2.6.3 mdfv3

346

365

asammdf 2.6.3 nodata mdfv3

374

194

mdfreader 0.2.6 mdfv3

7861

576

mdfreader 0.2.6 compress mdfv3

7935

543

mdfreader 0.2.6 compress bcolz 6 mdfv3

7563

1041

asammdf 2.6.3 mdfv4

475

441

asammdf 2.6.3 nodata mdfv4

443

256

mdfreader 0.2.6 mdfv4

5979

1329

mdfreader 0.2.6 compress mdfv4

6194

1287

mdfreader 0.2.6 compress bcolz6 mdfv4

5884

1763

Get all channels (36424 calls)

Time [ms]

RAM [MB]

asammdf 2.6.3 mdfv3

590

370

asammdf 2.6.3 nodata mdfv3

8521

199

mdfreader 0.2.6 mdfv3

59

545

mdfreader 0.2.6 noDataLoading mdfv3

18000000

198

mdfreader 0.2.6 compress mdfv3

609

270

mdfreader 0.2.6 compress bcolz 6 mdfv3

252

1042

asammdf 2.6.3 mdfv4

627

443

asammdf 2.6.3 nodata mdfv4

16623

254

mdfreader 0.2.6 mdfv4

60

1307

mdfreader 0.2.6 noDataLoading mdfv4

18000000

943

mdfreader 0.2.6 compress mdfv4

591

1030

mdfreader 0.2.6 compress bcolz 6 mdfv4

277

1753

Convert file

Time [ms]

RAM [MB]

asammdf 2.6.3 v3 to v4

4674

833

asammdf 2.6.3 v3 to v4 nodata

20945

578

asammdf 2.6.3 v4 to v3

5057

835

asammdf 2.6.3 v4 to v3 nodata

30132

723

Merge files

Time [ms]

RAM [MB]

asammdf 2.6.3 v3

10545

1439

asammdf 2.6.3 v3 nodata

30476

526

asammdf 2.6.3 v4

13780

1524

asammdf 2.6.3 v4 nodata

51810

587

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

asammdf-2.6.3.tar.gz (68.1 kB view details)

Uploaded Source

File details

Details for the file asammdf-2.6.3.tar.gz.

File metadata

  • Download URL: asammdf-2.6.3.tar.gz
  • Upload date:
  • Size: 68.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for asammdf-2.6.3.tar.gz
Algorithm Hash digest
SHA256 0414f1ca26ea38cc183204867dfb567058dfa357dd631a5515bd73452254bc79
MD5 ff38bd6119c304e3098c09027027f414
BLAKE2b-256 b1b967f7e2c9cb1e468217fd810e2e70ee80607696e39eaf9a14a73b44d98cfb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page