Skip to main content

ASAM MDF measurement data file parser

Project description

asammdf is a fast parser/editor for ASAM (Associtation for Standardisation of Automation and Measuring Systems) MDF (Measurement Data Format) files.

asammdf supports both MDF version 3 and 4 formats.

asammdf works on Python 2.7, and Python >= 3.4

Project goals

The main goals for this library are:

  • to be faster than the other Python based mdf libraries

  • to have clean and easy to understand code base

  • to have minimal 3-rd party dependencies

Features

  • create new mdf files from scratch

  • append new channels

  • read unsorted MDF v3 and v4 files

  • filter a subset of channels from original mdf file

  • cut measurement to specified time interval

  • convert to different mdf version

  • export to Excel, HDF5, Matlab and CSV

  • merge multiple files sharing the same internal structure

  • read and save mdf version 4.10 files containing zipped data blocks

  • split large data blocks (configurable size) for mdf version 4

  • disk space savings by compacting 1-dimensional integer channels (configurable)

  • full support (read, append, save) for the following map types (multidimensional array channels):

    • mdf version 3 channels with CDBLOCK

    • mdf version 4 structure channel composition

    • mdf version 4 channel arrays with CNTemplate storage and one of the array types:

      • 0 - array

      • 1 - scaling axis

      • 2 - look-up

  • add and extract attachments for mdf version 4

  • files are loaded in RAM for fast operations

  • handle large files (exceeding the available RAM) using load_measured_data = False argument

  • extract channel data, master channel and extra channel information as Signal objects for unified operations with v3 and v4 files

  • time domain operation using the Signal class

    • Pandas data frames are good if all the channels have the same time based

    • usually a measurement will have channels from different sources at different rates

    • the Signal class facilitates operations with such channels

Major features not implemented (yet)

  • for version 3

    • functionality related to sample reduction block (but the class is defined)

  • for version 4

    • handling of bus logging measurements

    • handling of unfinnished measurements (mdf 4)

    • full support for remaining mdf 4 channel arrays types

    • xml schema for TXBLOCK and MDBLOCK

    • partial conversions

    • event blocks

Usage

from asammdf import MDF

mdf = MDF('sample.mdf')
speed = mdf.get('WheelSpeed')
speed.plot()

important_signals = ['WheelSpeed', 'VehicleSpeed', 'VehicleAcceleration']
# get short measurement with a subset of channels from 10s to 12s
short = mdf.filter(important_signals).cut(start=10, stop=12)

# convert to version 4.10 and save to disk
short.convert('4.10').save('important signals.mf4')

# plot some channels from a huge file
efficient = MDF('huge.mf4', load_measured_data=False)
for signal in efficient.select(['Sensor1', 'Voltage3']):
    signal.plot()

Check the examples folder for extended usage demo.

Documentation

http://asammdf.readthedocs.io/en/latest

Installation

asammdf is available on

Dependencies

asammdf uses the following libraries

  • numpy : the heart that makes all tick

  • numexpr : for algebraic and rational channel conversions

  • matplotlib : for Signal plotting

  • wheel : for installation in virtual environments

optional dependencies needed for exports

  • pandas : for DataFrame export

  • h5py : for HDF5 export

  • xlsxwriter : for Excel export

  • scipy : for Matlab .mat export

Benchmarks

Graphical results can be seen here at http://asammdf.readthedocs.io/en/stable/benchmarks.html

Python 3 x86

Benchmark environment

  • 3.6.1 (v3.6.1:69c0db5, Mar 21 2017, 17:54:52) [MSC v.1900 32 bit (Intel)]

  • Windows-10-10.0.14393-SP0

  • Intel64 Family 6 Model 94 Stepping 3, GenuineIntel

  • 16GB installed RAM

Notations used in the results

  • nodata = asammdf MDF object created with load_measured_data=False (raw channel data not loaded into RAM)

  • compress = mdfreader mdf object created with compression=blosc

  • compression bcolz 6 = mdfreader mdf object created with compression=6

  • noDataLoading = mdfreader mdf object read with noDataLoading=True

Files used for benchmark:

  • 183 groups

  • 36424 channels

Open file

Time [ms]

RAM [MB]

asammdf 2.6.5 mdfv3

916

286

asammdf 2.6.5 nodata mdfv3

623

118

mdfreader 0.2.6 mdfv3

3373

458

mdfreader 0.2.6 compress mdfv3

4526

184

mdfreader 0.2.6 compress bcolz 6 mdfv3

4518

940

mdfreader 0.2.6 noDataLoading mdfv3

1833

120

asammdf 2.6.5 mdfv4

2214

330

asammdf 2.6.5 nodata mdfv4

1695

150

mdfreader 0.2.6 mdfv4

6348

870

mdfreader 0.2.6 compress mdfv4

7262

586

mdfreader 0.2.6 compress bcolz 6 mdfv4

7552

1294

mdfreader 0.2.6 noDataLoading mdfv4

4797

522

Save file

Time [ms]

RAM [MB]

asammdf 2.6.5 mdfv3

462

290

asammdf 2.6.5 nodata mdfv3

521

125

mdfreader 0.2.6 mdfv3

9175

481

mdfreader 0.2.6 compress mdfv3

9727

452

mdfreader 0.2.6 compress bcolz 6 mdfv3

9284

940

asammdf 2.6.5 mdfv4

657

334

asammdf 2.6.5 nodata mdfv4

710

159

mdfreader 0.2.6 mdfv4

6706

891

mdfreader 0.2.6 compress mdfv4

7030

851

mdfreader 0.2.6 compress bcolz6 mdfv4

6693

1311

Get all channels (36424 calls)

Time [ms]

RAM [MB]

asammdf 2.6.5 mdfv3

791

291

asammdf 2.6.5 nodata mdfv3

18430

128

mdfreader 0.2.6 mdfv3

78

457

mdfreader 0.2.6 compress mdfv3

738

187

mdfreader 0.2.6 compress bcolz 6 mdfv3

299

941

asammdf 2.6.5 mdfv4

863

334

asammdf 2.6.5 nodata mdfv4

20637

157

mdfreader 0.2.6 mdfv4

77

869

mdfreader 0.2.6 compress mdfv4

653

593

mdfreader 0.2.6 compress bcolz 6 mdfv4

313

1301

Convert file

Time [ms]

RAM [MB]

asammdf 2.6.5 v3 to v4

3843

680

asammdf 2.6.5 v3 to v4 nodata

4656

242

asammdf 2.6.5 v4 to v3

4261

681

asammdf 2.6.5 v4 to v3 nodata

5231

225

Merge files

Time [ms]

RAM [MB]

asammdf 2.6.5 v3

10058

1248

asammdf 2.6.5 v3 nodata

11174

363

asammdf 2.6.5 v4

14232

1282

asammdf 2.6.5 v4 nodata

14629

380

Python 3 x64

Benchmark environment

  • 3.6.2 (v3.6.2:5fd33b5, Jul 8 2017, 04:57:36) [MSC v.1900 64 bit (AMD64)]

  • Windows-10-10.0.14393-SP0

  • Intel64 Family 6 Model 94 Stepping 3, GenuineIntel

  • 16GB installed RAM

Notations used in the results

  • nodata = asammdf MDF object created with load_measured_data=False (raw channel data not loaded into RAM)

  • compress = mdfreader mdf object created with compression=blosc

  • compression bcolz 6 = mdfreader mdf object created with compression=6

  • noDataLoading = mdfreader mdf object read with noDataLoading=True

Files used for benchmark:

  • 183 groups

  • 36424 channels

Open file

Time [ms]

RAM [MB]

asammdf 2.6.5 mdfv3

779

364

asammdf 2.6.5 nodata mdfv3

551

187

mdfreader 0.2.6 mdfv3

2672

545

mdfreader 0.2.6 compress mdfv3

3844

267

mdfreader 0.2.6 compress bcolz 6 mdfv3

3886

1040

mdfreader 0.2.6 noDataLoading mdfv3

1400

198

asammdf 2.6.5 mdfv4

1883

435

asammdf 2.6.5 nodata mdfv4

1457

244

mdfreader 0.2.6 mdfv4

5371

1307

mdfreader 0.2.6 compress mdfv4

6470

1023

mdfreader 0.2.6 compress bcolz 6 mdfv4

6894

1746

mdfreader 0.2.6 noDataLoading mdfv4

4078

943

Save file

Time [ms]

RAM [MB]

asammdf 2.6.5 mdfv3

356

366

asammdf 2.6.5 nodata mdfv3

398

195

mdfreader 0.2.6 mdfv3

10164

577

mdfreader 0.2.6 compress mdfv3

12341

542

mdfreader 0.2.6 compress bcolz 6 mdfv3

11427

958

asammdf 2.6.5 mdfv4

805

440

asammdf 2.6.5 nodata mdfv4

522

255

mdfreader 0.2.6 mdfv4

7256

1328

mdfreader 0.2.6 compress mdfv4

7010

1288

mdfreader 0.2.6 compress bcolz6 mdfv4

6688

1763

Get all channels (36424 calls)

Time [ms]

RAM [MB]

asammdf 2.6.5 mdfv3

657

370

asammdf 2.6.5 nodata mdfv3

9647

200

mdfreader 0.2.6 mdfv3

67

544

mdfreader 0.2.6 compress mdfv3

698

270

mdfreader 0.2.6 compress bcolz 6 mdfv3

267

1042

asammdf 2.6.5 mdfv4

736

443

asammdf 2.6.5 nodata mdfv4

13552

254

mdfreader 0.2.6 mdfv4

64

1307

mdfreader 0.2.6 compress mdfv4

631

1031

mdfreader 0.2.6 compress bcolz 6 mdfv4

304

1753

Convert file

Time [ms]

RAM [MB]

asammdf 2.6.5 v3 to v4

3675

823

asammdf 2.6.5 v3 to v4 nodata

4607

379

asammdf 2.6.5 v4 to v3

4442

831

asammdf 2.6.5 v4 to v3 nodata

5105

366

Merge files

Time [ms]

RAM [MB]

asammdf 2.6.5 v3

8605

1449

asammdf 2.6.5 v3 nodata

11089

544

asammdf 2.6.5 v4

13469

1536

asammdf 2.6.5 v4 nodata

15565

600

Project details


Release history Release notifications | RSS feed

This version

2.6.7

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

asammdf-2.6.7.tar.gz (74.2 kB view details)

Uploaded Source

File details

Details for the file asammdf-2.6.7.tar.gz.

File metadata

  • Download URL: asammdf-2.6.7.tar.gz
  • Upload date:
  • Size: 74.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for asammdf-2.6.7.tar.gz
Algorithm Hash digest
SHA256 e61eab5ff20e763142fc286adf9f1902c8508ff92771f081c9cfdc49660b87d4
MD5 22753460d89aa46545edd5eda04eb3be
BLAKE2b-256 da24ef68717b233305dcc76fd7f1a4b1d1cd3541b751e0de511b8ee68e2a4fb2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page