Skip to main content

ASAM MDF measurement data file parser

Project description

asammdf is a fast parser/editor for ASAM (Associtation for Standardisation of Automation and Measuring Systems) MDF (Measurement Data Format) files.

asammdf supports MDF versions 2 (.dat), 3 (.mdf) and 4 (.mf4).

asammdf works on Python 2.7, and Python >= 3.4

Project goals

The main goals for this library are:

  • to be faster than the other Python based mdf libraries

  • to have clean and easy to understand code base

  • to have minimal 3-rd party dependencies

Features

  • create new mdf files from scratch

  • append new channels

  • read unsorted MDF v3 and v4 files

  • filter a subset of channels from original mdf file

  • cut measurement to specified time interval

  • convert to different mdf version

  • export to Excel, HDF5, Matlab and CSV

  • merge multiple files sharing the same internal structure

  • read and save mdf version 4.10 files containing zipped data blocks

  • split large data blocks (configurable size) for mdf version 4

  • disk space savings by compacting 1-dimensional integer channels (configurable)

  • full support (read, append, save) for the following map types (multidimensional array channels):

    • mdf version 3 channels with CDBLOCK

    • mdf version 4 structure channel composition

    • mdf version 4 channel arrays with CNTemplate storage and one of the array types:

      • 0 - array

      • 1 - scaling axis

      • 2 - look-up

  • add and extract attachments for mdf version 4

  • files are loaded in RAM for fast operations

  • handle large files (exceeding the available RAM) using memory = minimum argument

  • extract channel data, master channel and extra channel information as Signal objects for unified operations with v3 and v4 files

  • time domain operation using the Signal class

    • Pandas data frames are good if all the channels have the same time based

    • usually a measurement will have channels from different sources at different rates

    • the Signal class facilitates operations with such channels

Major features not implemented (yet)

  • for version 3

    • functionality related to sample reduction block (but the class is defined)

  • for version 4

    • handling of bus logging measurements

    • handling of unfinished measurements (mdf 4)

    • full support for remaining mdf 4 channel arrays types

    • xml schema for TXBLOCK and MDBLOCK

    • partial conversions

    • event blocks

    • channels with default X axis

    • chanenls with reference to attachment

Usage

from asammdf import MDF

mdf = MDF('sample.mdf')
speed = mdf.get('WheelSpeed')
speed.plot()

important_signals = ['WheelSpeed', 'VehicleSpeed', 'VehicleAcceleration']
# get short measurement with a subset of channels from 10s to 12s
short = mdf.filter(important_signals).cut(start=10, stop=12)

# convert to version 4.10 and save to disk
short.convert('4.10').save('important signals.mf4')

# plot some channels from a huge file
efficient = MDF('huge.mf4', memory='minimum')
for signal in efficient.select(['Sensor1', 'Voltage3']):
    signal.plot()

Check the examples folder for extended usage demo, or the documentation http://asammdf.readthedocs.io/en/master/examples.html

Documentation

http://asammdf.readthedocs.io/en/master

Installation

asammdf is available on

Dependencies

asammdf uses the following libraries

  • numpy : the heart that makes all tick

  • numexpr : for algebraic and rational channel conversions

  • matplotlib : for Signal plotting

  • wheel : for installation in virtual environments

  • pandas : for DataFrame export

optional dependencies needed for exports

  • h5py : for HDF5 export

  • xlsxwriter : for Excel export

  • scipy : for Matlab .mat export

Benchmarks

Graphical results can be seen here at http://asammdf.readthedocs.io/en/master/benchmarks.html

Python 3 x86

Benchmark environment

  • 3.6.1 (v3.6.1:69c0db5, Mar 21 2017, 17:54:52) [MSC v.1900 32 bit (Intel)]

  • Windows-10-10.0.14393-SP0

  • Intel64 Family 6 Model 94 Stepping 3, GenuineIntel

  • 16GB installed RAM

Notations used in the results

  • full = asammdf MDF object created with memory=full (everything loaded into RAM)

  • low = asammdf MDF object created with memory=low (raw channel data not loaded into RAM, but metadata loaded to RAM)

  • minimum = asammdf MDF object created with memory=full (lowest possible RAM usage)

  • compress = mdfreader mdf object created with compression=blosc

  • noDataLoading = mdfreader mdf object read with noDataLoading=True

Files used for benchmark:

  • 183 groups

  • 36424 channels

Open file

Time [ms]

RAM [MB]

asammdf 2.8.0 full mdfv3

918

264

asammdf 2.8.0 low mdfv3

898

110

asammdf 2.8.0 minimum mdfv3

577

56

mdfreader 2.7.2 mdfv3

2462

395

mdfreader 2.7.2 compress mdfv3

4174

97

mdfreader 2.7.2 noDataLoading mdfv3

911

105

asammdf 2.8.0 full mdfv4

2644

302

asammdf 2.8.0 low mdfv4

2269

137

asammdf 2.8.0 minimum mdfv4

1883

62

mdfreader 2.7.2 mdfv4

5869

403

mdfreader 2.7.2 compress mdfv4

7367

101

mdfreader 2.7.2 noDataLoading mdfv4

3897

110

Save file

Time [ms]

RAM [MB]

asammdf 2.8.0 full mdfv3

452

267

asammdf 2.8.0 low mdfv3

495

118

asammdf 2.8.0 minimum mdfv3

1206

62

mdfreader 2.7.2 mdfv3

9258

415

asammdf 2.8.0 full mdfv4

642

307

asammdf 2.8.0 low mdfv4

693

146

asammdf 2.8.0 minimum mdfv4

2642

71

mdfreader 2.7.2 mdfv4

8548

422

Get all channels (36424 calls)

Time [ms]

RAM [MB]

asammdf 2.8.0 full mdfv3

889

268

asammdf 2.8.0 low mdfv3

12707

120

asammdf 2.8.0 minimum mdfv3

13644

66

mdfreader 2.7.2 mdfv3

80

395

mdfreader 2.7.2 nodata mdfv3

1413

310

mdfreader 2.7.2 compress mdfv3

529

97

asammdf 2.8.0 full mdfv4

968

307

asammdf 2.8.0 low mdfv4

14475

144

asammdf 2.8.0 minimum mdfv4

17057

69

mdfreader 2.7.2 mdfv4

72

403

mdfreader 2.7.2 nodata mdfv4

1806

325

mdfreader 2.7.2 compress mdfv4

562

107

Convert file

Time [ms]

RAM [MB]

asammdf 2.8.0 full v3 to v4

4048

642

asammdf 2.8.0 low v3 to v4

4551

219

asammdf 2.8.0 minimum v3 to v4

5847

121

asammdf 2.8.0 full v4 to v3

4394

639

asammdf 2.8.0 low v4 to v3

5239

198

asammdf 2.8.0 minimum v4 to v3

8392

98

Merge files

Time [ms]

RAM [MB]

asammdf 2.8.0 full v3

10061

1168

asammdf 2.8.0 low v3

11245

323

asammdf 2.8.0 minimum v3

13618

186

asammdf 2.8.0 full v4

14144

1226

asammdf 2.8.0 low v4

15410

355

asammdf 2.8.0 minimum v4

21417

170

Observations

  • mdfreader got a MemoryError in the merge tests

Python 3 x64

Benchmark environment

  • 3.6.1 (v3.6.1:69c0db5, Mar 21 2017, 18:41:36) [MSC v.1900 64 bit (AMD64)]

  • Windows-10-10.0.14393-SP0

  • Intel64 Family 6 Model 94 Stepping 3, GenuineIntel

  • 16GB installed RAM

Notations used in the results

  • full = asammdf MDF object created with memory=full (everything loaded into RAM)

  • low = asammdf MDF object created with memory=low (raw channel data not loaded into RAM, but metadata loaded to RAM)

  • minimum = asammdf MDF object created with memory=full (lowest possible RAM usage)

  • compress = mdfreader mdf object created with compression=blosc

  • noDataLoading = mdfreader mdf object read with noDataLoading=True

Files used for benchmark:

  • 183 groups

  • 36424 channels

Open file

Time [ms]

RAM [MB]

asammdf 2.8.0 full mdfv3

772

319

asammdf 2.8.0 low mdfv3

656

165

asammdf 2.8.0 minimum mdfv3

441

77

mdfreader 2.7.2 mdfv3

1783

428

mdfreader 2.7.2 compress mdfv3

3330

127

mdfreader 2.7.2 noDataLoading mdfv3

699

167

asammdf 2.8.0 full mdfv4

1903

381

asammdf 2.8.0 low mdfv4

1783

216

asammdf 2.8.0 minimum mdfv4

1348

88

mdfreader 2.7.2 mdfv4

4849

442

mdfreader 2.7.2 compress mdfv4

6347

138

mdfreader 2.7.2 noDataLoading mdfv4

3425

176

Save file

Time [ms]

RAM [MB]

asammdf 2.8.0 full mdfv3

359

321

asammdf 2.8.0 low mdfv3

415

172

asammdf 2.8.0 minimum mdfv3

993

86

mdfreader 2.7.2 mdfv3

8402

456

mdfreader 2.7.2 compress mdfv3

8364

424

asammdf 2.8.0 full mdfv4

497

387

asammdf 2.8.0 low mdfv4

507

228

asammdf 2.8.0 minimum mdfv4

2179

97

mdfreader 2.7.2 mdfv4

7958

460

mdfreader 2.7.2 compress mdfv4

8170

417

Get all channels (36424 calls)

Time [ms]

RAM [MB]

asammdf 2.8.0 full mdfv3

772

325

asammdf 2.8.0 low mdfv3

3784

179

asammdf 2.8.0 minimum mdfv3

5076

92

mdfreader 2.7.2 mdfv3

65

428

mdfreader 2.7.2 nodata mdfv3

1231

379

mdfreader 2.7.2 compress mdfv3

487

127

asammdf 2.8.0 full mdfv4

800

389

asammdf 2.8.0 low mdfv4

7025

226

asammdf 2.8.0 minimum mdfv4

9518

100

mdfreader 2.7.2 mdfv4

71

442

mdfreader 2.7.2 nodata mdfv4

1575

404

mdfreader 2.7.2 compress mdfv4

508

145

Convert file

Time [ms]

RAM [MB]

asammdf 2.8.0 full v3 to v4

3461

751

asammdf 2.8.0 low v3 to v4

4092

331

asammdf 2.8.0 minimum v3 to v4

4852

163

asammdf 2.8.0 full v4 to v3

3732

753

asammdf 2.8.0 low v4 to v3

4348

313

asammdf 2.8.0 minimum v4 to v3

7136

134

Merge files

Time [ms]

RAM [MB]

asammdf 2.8.0 full v3

8152

1312

asammdf 2.8.0 low v3

9839

456

asammdf 2.8.0 minimum v3

11694

228

mdfreader 2.7.2 v3

10352

2927

mdfreader 2.7.2 compress v3

15314

2940

asammdf 2.8.0 full v4

11938

1434

asammdf 2.8.0 low v4

13154

549

asammdf 2.8.0 minimum v4

17188

229

mdfreader 2.7.2 v4

16536

2941

mdfreader 2.7.2 compress v4

21261

2951

Project details


Release history Release notifications | RSS feed

This version

2.8.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

asammdf-2.8.0.tar.gz (111.1 kB view details)

Uploaded Source

File details

Details for the file asammdf-2.8.0.tar.gz.

File metadata

  • Download URL: asammdf-2.8.0.tar.gz
  • Upload date:
  • Size: 111.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for asammdf-2.8.0.tar.gz
Algorithm Hash digest
SHA256 e9697fa36c80ffac8d35b6fe809389381565d0079c6144175373a36e53bc8053
MD5 0e21fc0c50629e5accecec08039a7f17
BLAKE2b-256 b247553875e698de44e773f45214bd57de15612da8ea91b1a898d24bc2c43660

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page