Skip to main content

ASAM MDF measurement data file parser

Project description

asammdf is a fast parser/editor for ASAM (Associtation for Standardisation of Automation and Measuring Systems) MDF (Measurement Data Format) files.

asammdf supports MDF versions 2 (.dat), 3 (.mdf) and 4 (.mf4).

asammdf works on Python 2.7, and Python >= 3.4 (Travis CI tests done with Python 2.7 and Python >= 3.5)

Project goals

The main goals for this library are:

  • to be faster than the other Python based mdf libraries

  • to have clean and easy to understand code base

  • to have minimal 3-rd party dependencies

Features

  • create new mdf files from scratch

  • append new channels

  • read unsorted MDF v3 and v4 files

  • filter a subset of channels from original mdf file

  • cut measurement to specified time interval

  • convert to different mdf version

  • export to Excel, HDF5, Matlab and CSV

  • merge multiple files sharing the same internal structure

  • read and save mdf version 4.10 files containing zipped data blocks

  • split large data blocks (configurable size) for mdf version 4

  • disk space savings by compacting 1-dimensional integer channels (configurable)

  • full support (read, append, save) for the following map types (multidimensional array channels):

    • mdf version 3 channels with CDBLOCK

    • mdf version 4 structure channel composition

    • mdf version 4 channel arrays with CNTemplate storage and one of the array types:

      • 0 - array

      • 1 - scaling axis

      • 2 - look-up

  • add and extract attachments for mdf version 4

  • files are loaded in RAM for fast operations

  • handle large files (exceeding the available RAM) using memory = minimum argument

  • extract channel data, master channel and extra channel information as Signal objects for unified operations with v3 and v4 files

  • time domain operation using the Signal class

    • Pandas data frames are good if all the channels have the same time based

    • usually a measurement will have channels from different sources at different rates

    • the Signal class facilitates operations with such channels

Major features not implemented (yet)

  • for version 3

    • functionality related to sample reduction block (but the class is defined)

  • for version 4

    • handling of bus logging measurements

    • handling of unfinished measurements (mdf 4)

    • full support for remaining mdf 4 channel arrays types

    • xml schema for TXBLOCK and MDBLOCK

    • partial conversions

    • event blocks

    • channels with default X axis

    • chanenls with reference to attachment

Usage

from asammdf import MDF

mdf = MDF('sample.mdf')
speed = mdf.get('WheelSpeed')
speed.plot()

important_signals = ['WheelSpeed', 'VehicleSpeed', 'VehicleAcceleration']
# get short measurement with a subset of channels from 10s to 12s
short = mdf.filter(important_signals).cut(start=10, stop=12)

# convert to version 4.10 and save to disk
short.convert('4.10').save('important signals.mf4')

# plot some channels from a huge file
efficient = MDF('huge.mf4', memory='minimum')
for signal in efficient.select(['Sensor1', 'Voltage3']):
    signal.plot()

Check the examples folder for extended usage demo, or the documentation http://asammdf.readthedocs.io/en/master/examples.html

Documentation

http://asammdf.readthedocs.io/en/master

Installation

asammdf is available on

Dependencies

asammdf uses the following libraries

  • numpy : the heart that makes all tick

  • numexpr : for algebraic and rational channel conversions

  • matplotlib : for Signal plotting

  • wheel : for installation in virtual environments

  • pandas : for DataFrame export

optional dependencies needed for exports

  • h5py : for HDF5 export

  • xlsxwriter : for Excel export

  • scipy : for Matlab .mat export

Benchmarks

Graphical results can be seen here at http://asammdf.readthedocs.io/en/master/benchmarks.html

Python 3 x86

Benchmark environment

  • 3.6.3 (v3.6.3:2c5fed8, Oct 3 2017, 17:26:49) [MSC v.1900 32 bit (Intel)]

  • Windows-10-10.0.16299-SP0

  • Intel64 Family 6 Model 69 Stepping 1, GenuineIntel

  • 16GB installed RAM

Notations used in the results

  • full = asammdf MDF object created with memory=full (everything loaded into RAM)

  • low = asammdf MDF object created with memory=low (raw channel data not loaded into RAM, but metadata loaded to RAM)

  • minimum = asammdf MDF object created with memory=full (lowest possible RAM usage)

  • compress = mdfreader mdf object created with compression=blosc

  • noDataLoading = mdfreader mdf object read with noDataLoading=True

Files used for benchmark:

  • 183 groups

  • 36424 channels

Open file

Time [ms]

RAM [MB]

asammdf 2.8.1 full mdfv3

1259

260

asammdf 2.8.1 low mdfv3

1076

106

asammdf 2.8.1 minimum mdfv3

767

52

mdfreader 2.7.3 mdfv3

3146

392

mdfreader 2.7.3 noDataLoading mdfv3

1159

102

asammdf 2.8.1 full mdfv4

2792

299

asammdf 2.8.1 low mdfv4

2645

133

asammdf 2.8.1 minimum mdfv4

2070

58

mdfreader 2.7.3 mdfv4

7372

397

mdfreader 2.7.3 noDataLoading mdfv4

4526

104

Save file

Time [ms]

RAM [MB]

asammdf 2.8.1 full mdfv3

581

263

asammdf 2.8.1 low mdfv3

688

114

asammdf 2.8.1 minimum mdfv3

1931

58

mdfreader 2.7.3 mdfv3

8902

412

mdfreader 2.7.3 noDataLoading mdfv3

10490

420

asammdf 2.8.1 full mdfv4

843

303

asammdf 2.8.1 low mdfv4

959

143

asammdf 2.8.1 minimum mdfv4

3698

67

mdfreader 2.7.3 mdfv4

8084

417

mdfreader 2.7.3 noDataLoading mdfv4

9524

426

Get all channels (36424 calls)

Time [ms]

RAM [MB]

asammdf 2.8.1 full mdfv3

1278

265

asammdf 2.8.1 low mdfv3

18354

116

asammdf 2.8.1 minimum mdfv3

19288

63

mdfreader 2.7.3 mdfv3

117

392

asammdf 2.8.1 full mdfv4

1266

303

asammdf 2.8.1 low mdfv4

20515

141

asammdf 2.8.1 minimum mdfv4

23939

65

mdfreader 2.7.3 mdfv4

116

398

Convert file

Time [ms]

RAM [MB]

asammdf 2.8.1 full v3 to v4

5667

638

asammdf 2.8.1 low v3 to v4

6483

215

asammdf 2.8.1 minimum v3 to v4

8301

117

asammdf 2.8.1 full v4 to v3

6910

635

asammdf 2.8.1 low v4 to v3

7938

195

asammdf 2.8.1 minimum v4 to v3

12352

94

Merge files

Time [ms]

RAM [MB]

asammdf 2.8.1 full v3

14564

1165

asammdf 2.8.1 low v3

16148

319

asammdf 2.8.1 minimum v3

19046

180

mdfreader 2.7.3 v3

16765

928

asammdf 2.8.1 full v4

21262

1223

asammdf 2.8.1 low v4

23150

352

asammdf 2.8.1 minimum v4

30687

166

mdfreader 2.7.3 v4

25437

919

Python 3 x64

Benchmark environment

  • 3.6.2 (v3.6.2:5fd33b5, Jul 8 2017, 04:57:36) [MSC v.1900 64 bit (AMD64)]

  • Windows-10-10.0.16299-SP0

  • Intel64 Family 6 Model 69 Stepping 1, GenuineIntel

  • 16GB installed RAM

Notations used in the results

  • full = asammdf MDF object created with memory=full (everything loaded into RAM)

  • low = asammdf MDF object created with memory=low (raw channel data not loaded into RAM, but metadata loaded to RAM)

  • minimum = asammdf MDF object created with memory=full (lowest possible RAM usage)

  • compress = mdfreader mdf object created with compression=blosc

  • noDataLoading = mdfreader mdf object read with noDataLoading=True

Files used for benchmark:

  • 183 groups

  • 36424 channels

Open file

Time [ms]

RAM [MB]

asammdf 2.8.1 full mdfv3

1100

327

asammdf 2.8.1 low mdfv3

980

174

asammdf 2.8.1 minimum mdfv3

599

86

mdfreader 2.7.3 mdfv3

2567

436

mdfreader 2.7.3 compress mdfv3

4324

135

mdfreader 2.7.3 noDataLoading mdfv3

973

176

asammdf 2.8.1 full mdfv4

2613

390

asammdf 2.8.1 low mdfv4

2491

225

asammdf 2.8.1 minimum mdfv4

1749

97

mdfreader 2.7.3 mdfv4

6457

448

mdfreader 2.7.3 compress mdfv4

8219

147

mdfreader 2.7.3 noDataLoading mdfv4

4221

180

Save file

Time [ms]

RAM [MB]

asammdf 2.8.1 full mdfv3

676

327

asammdf 2.8.1 low mdfv3

541

181

asammdf 2.8.1 minimum mdfv3

1363

95

mdfreader 2.7.3 mdfv3

8013

465

mdfreader 2.7.3 noDataLoading mdfv3

8948

476

mdfreader 2.7.3 compress mdfv3

7629

432

asammdf 2.8.1 full mdfv4

672

395

asammdf 2.8.1 low mdfv4

736

237

asammdf 2.8.1 minimum mdfv4

3127

107

mdfreader 2.7.3 mdfv4

7237

467

mdfreader 2.7.3 noDataLoading mdfv4

8332

473

mdfreader 2.7.3 compress mdfv4

6791

426

Get all channels (36424 calls)

Time [ms]

RAM [MB]

asammdf 2.8.1 full mdfv3

967

333

asammdf 2.8.1 low mdfv3

5690

186

asammdf 2.8.1 minimum mdfv3

7296

99

mdfreader 2.7.3 mdfv3

95

436

mdfreader 2.7.3 compress mdfv3

531

135

asammdf 2.8.1 full mdfv4

988

397

asammdf 2.8.1 low mdfv4

10572

234

asammdf 2.8.1 minimum mdfv4

13803

108

mdfreader 2.7.3 mdfv4

95

448

mdfreader 2.7.3 compress mdfv4

534

148

Convert file

Time [ms]

RAM [MB]

asammdf 2.8.1 full v3 to v4

4986

759

asammdf 2.8.1 low v3 to v4

5573

340

asammdf 2.8.1 minimum v3 to v4

7049

171

asammdf 2.8.1 full v4 to v3

5705

761

asammdf 2.8.1 low v4 to v3

6510

321

asammdf 2.8.1 minimum v4 to v3

10434

142

Merge files

Time [ms]

RAM [MB]

asammdf 2.8.1 full v3

12251

1320

asammdf 2.8.1 low v3

14453

464

asammdf 2.8.1 minimum v3

16830

236

mdfreader 2.7.3 v3

15635

983

mdfreader 2.7.3 compress v3

20812

993

asammdf 2.8.1 full v4

18172

1441

asammdf 2.8.1 low v4

20083

558

asammdf 2.8.1 minimum v4

26374

237

mdfreader 2.7.3 v4

23450

981

mdfreader 2.7.3 compress v4

28421

985

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

asammdf-2.8.1.tar.gz (114.9 kB view details)

Uploaded Source

File details

Details for the file asammdf-2.8.1.tar.gz.

File metadata

  • Download URL: asammdf-2.8.1.tar.gz
  • Upload date:
  • Size: 114.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for asammdf-2.8.1.tar.gz
Algorithm Hash digest
SHA256 ed6d6cf648833657dc11f93b2a159d79d2e1729dccfcaf3c77314f66fb30e99b
MD5 0079c6a9761483627d53535ec2ad0333
BLAKE2b-256 16d87aee9fe20ba4d1b73a49c9173f17153a0b5d1f3b51fa7a56e62f93a87a37

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page