Skip to main content

ASAM MDF measurement data file parser

Project description

asammdf is a fast parser/editor for ASAM (Associtation for Standardisation of Automation and Measuring Systems) MDF (Measurement Data Format) files.

asammdf supports MDF versions 2 (.dat), 3 (.mdf) and 4 (.mf4).

asammdf works on Python 2.7, and Python >= 3.4 (Travis CI tests done with Python 2.7 and Python >= 3.5)

Project goals

The main goals for this library are:

  • to be faster than the other Python based mdf libraries

  • to have clean and easy to understand code base

  • to have minimal 3-rd party dependencies

Features

  • create new mdf files from scratch

  • append new channels

  • read unsorted MDF v3 and v4 files

  • filter a subset of channels from original mdf file

  • cut measurement to specified time interval

  • convert to different mdf version

  • export to Excel, HDF5, Matlab and CSV

  • merge multiple files sharing the same internal structure

  • read and save mdf version 4.10 files containing zipped data blocks

  • split large data blocks (configurable size) for mdf version 4

  • disk space savings by compacting 1-dimensional integer channels (configurable)

  • full support (read, append, save) for the following map types (multidimensional array channels):

    • mdf version 3 channels with CDBLOCK

    • mdf version 4 structure channel composition

    • mdf version 4 channel arrays with CNTemplate storage and one of the array types:

      • 0 - array

      • 1 - scaling axis

      • 2 - look-up

  • add and extract attachments for mdf version 4

  • files are loaded in RAM for fast operations

  • handle large files (exceeding the available RAM) using memory = minimum argument

  • extract channel data, master channel and extra channel information as Signal objects for unified operations with v3 and v4 files

  • time domain operation using the Signal class

    • Pandas data frames are good if all the channels have the same time based

    • usually a measurement will have channels from different sources at different rates

    • the Signal class facilitates operations with such channels

Major features not implemented (yet)

  • for version 3

    • functionality related to sample reduction block (but the class is defined)

  • for version 4

    • handling of bus logging measurements

    • handling of unfinished measurements (mdf 4)

    • full support for remaining mdf 4 channel arrays types

    • xml schema for TXBLOCK and MDBLOCK

    • partial conversions

    • event blocks

    • channels with default X axis

    • chanenls with reference to attachment

Usage

from asammdf import MDF

mdf = MDF('sample.mdf')
speed = mdf.get('WheelSpeed')
speed.plot()

important_signals = ['WheelSpeed', 'VehicleSpeed', 'VehicleAcceleration']
# get short measurement with a subset of channels from 10s to 12s
short = mdf.filter(important_signals).cut(start=10, stop=12)

# convert to version 4.10 and save to disk
short.convert('4.10').save('important signals.mf4')

# plot some channels from a huge file
efficient = MDF('huge.mf4', memory='minimum')
for signal in efficient.select(['Sensor1', 'Voltage3']):
    signal.plot()

Check the examples folder for extended usage demo, or the documentation http://asammdf.readthedocs.io/en/master/examples.html

Documentation

http://asammdf.readthedocs.io/en/master

Installation

asammdf is available on

Dependencies

asammdf uses the following libraries

  • numpy : the heart that makes all tick

  • numexpr : for algebraic and rational channel conversions

  • matplotlib : for Signal plotting

  • wheel : for installation in virtual environments

  • pandas : for DataFrame export

optional dependencies needed for exports

  • h5py : for HDF5 export

  • xlsxwriter : for Excel export

  • scipy : for Matlab .mat export

Benchmarks

Graphical results can be seen here at http://asammdf.readthedocs.io/en/master/benchmarks.html

Python 3 x86

Benchmark environment

  • 3.6.3 (v3.6.3:2c5fed8, Oct 3 2017, 17:26:49) [MSC v.1900 32 bit (Intel)]

  • Windows-10-10.0.16299-SP0

  • Intel64 Family 6 Model 69 Stepping 1, GenuineIntel

  • 16GB installed RAM

Notations used in the results

  • full = asammdf MDF object created with memory=full (everything loaded into RAM)

  • low = asammdf MDF object created with memory=low (raw channel data not loaded into RAM, but metadata loaded to RAM)

  • minimum = asammdf MDF object created with memory=full (lowest possible RAM usage)

  • compress = mdfreader mdf object created with compression=blosc

  • noDataLoading = mdfreader mdf object read with noDataLoading=True

Files used for benchmark:

  • 183 groups

  • 36424 channels

Open file

Time [ms]

RAM [MB]

asammdf 2.8.1 full mdfv3

1207

260

asammdf 2.8.1 low mdfv3

1065

107

asammdf 2.8.1 minimum mdfv3

746

52

mdfreader 2.7.4 mdfv3

3061

392

mdfreader 2.7.4 noDataLoading mdfv3

1154

106

asammdf 2.8.1 full mdfv4

2811

298

asammdf 2.8.1 low mdfv4

2708

134

asammdf 2.8.1 minimum mdfv4

2081

58

mdfreader 2.7.4 mdfv4

7293

397

mdfreader 2.7.4 noDataLoading mdfv4

4557

109

Save file

Time [ms]

RAM [MB]

asammdf 2.8.1 full mdfv3

564

264

asammdf 2.8.1 low mdfv3

628

115

asammdf 2.8.1 minimum mdfv3

1780

58

mdfreader 2.7.4 mdfv3

9021

412

mdfreader 2.7.4 noDataLoading mdfv3

0*

0*

asammdf 2.8.1 full mdfv4

798

303

asammdf 2.8.1 low mdfv4

916

143

asammdf 2.8.1 minimum mdfv4

3992

67

mdfreader 2.7.4 mdfv4

8069

417

mdfreader 2.7.4 noDataLoading mdfv4

9646

434

Get all channels (36424 calls)

Time [ms]

RAM [MB]

asammdf 2.8.1 full mdfv3

1226

265

asammdf 2.8.1 low mdfv3

17517

117

asammdf 2.8.1 minimum mdfv3

19145

63

mdfreader 2.7.4 mdfv3

120

392

mdfreader 2.7.4 nodata mdfv3

30561

130

asammdf 2.8.1 full mdfv4

1234

304

asammdf 2.8.1 low mdfv4

20214

141

asammdf 2.8.1 minimum mdfv4

23583

65

mdfreader 2.7.4 mdfv4

115

397

mdfreader 2.7.4 nodata mdfv4

38428

123

Convert file

Time [ms]

RAM [MB]

asammdf 2.8.1 full v3 to v4

5507

638

asammdf 2.8.1 low v3 to v4

6345

215

asammdf 2.8.1 minimum v3 to v4

8098

118

asammdf 2.8.1 full v4 to v3

6761

635

asammdf 2.8.1 low v4 to v3

7732

194

asammdf 2.8.1 minimum v4 to v3

12232

94

Merge files

Time [ms]

RAM [MB]

asammdf 2.8.1 full v3

14283

1166

asammdf 2.8.1 low v3

15639

320

asammdf 2.8.1 minimum v3

18547

181

mdfreader 2.7.4 v3

16451

929

mdfreader 2.7.4 nodata v3

0*

0*

asammdf 2.8.1 full v4

20925

1223

asammdf 2.8.1 low v4

22659

352

asammdf 2.8.1 minimum v4

29923

166

mdfreader 2.7.4 v4

25032

919

mdfreader 2.7.4 nodata v4

24316

948

Python 3 x64

Benchmark environment

  • 3.6.2 (v3.6.2:5fd33b5, Jul 8 2017, 04:57:36) [MSC v.1900 64 bit (AMD64)]

  • Windows-10-10.0.16299-SP0

  • Intel64 Family 6 Model 69 Stepping 1, GenuineIntel

  • 16GB installed RAM

Notations used in the results

  • full = asammdf MDF object created with memory=full (everything loaded into RAM)

  • low = asammdf MDF object created with memory=low (raw channel data not loaded into RAM, but metadata loaded to RAM)

  • minimum = asammdf MDF object created with memory=full (lowest possible RAM usage)

  • compress = mdfreader mdf object created with compression=blosc

  • noDataLoading = mdfreader mdf object read with noDataLoading=True

Files used for benchmark:

  • 183 groups

  • 36424 channels

Open file

Time [ms]

RAM [MB]

asammdf 2.8.1 full mdfv3

1054

317

asammdf 2.8.1 low mdfv3

919

164

asammdf 2.8.1 minimum mdfv3

592

76

mdfreader 2.7.4 mdfv3

2545

426

mdfreader 2.7.4 compress mdfv3

4188

126

mdfreader 2.7.4 noDataLoading mdfv3

1015

173

asammdf 2.8.1 full mdfv4

2438

380

asammdf 2.8.1 low mdfv4

2311

215

asammdf 2.8.1 minimum mdfv4

1649

87

mdfreader 2.7.4 mdfv4

6176

438

mdfreader 2.7.4 compress mdfv4

7940

137

mdfreader 2.7.4 noDataLoading mdfv4

4013

180

Save file

Time [ms]

RAM [MB]

asammdf 2.8.1 full mdfv3

507

319

asammdf 2.8.1 low mdfv3

515

171

asammdf 2.8.1 minimum mdfv3

1263

84

mdfreader 2.7.4 mdfv3

7590

454

mdfreader 2.7.4 noDataLoading mdfv3

0*

0*

mdfreader 2.7.4 compress mdfv3

7236

423

asammdf 2.8.1 full mdfv4

599

385

asammdf 2.8.1 low mdfv4

703

227

asammdf 2.8.1 minimum mdfv4

3157

97

mdfreader 2.7.4 mdfv4

6764

457

mdfreader 2.7.4 noDataLoading mdfv4

8053

476

mdfreader 2.7.4 compress mdfv4

6677

416

Get all channels (36424 calls)

Time [ms]

RAM [MB]

asammdf 2.8.1 full mdfv3

1016

323

asammdf 2.8.1 low mdfv3

5599

177

asammdf 2.8.1 minimum mdfv3

7105

91

mdfreader 2.7.4 mdfv3

102

426

mdfreader 2.7.4 nodata mdfv3

16651

208

mdfreader 2.7.4 compress mdfv3

515

126

asammdf 2.8.1 full mdfv4

1080

388

asammdf 2.8.1 low mdfv4

10658

225

asammdf 2.8.1 minimum mdfv4

13554

98

mdfreader 2.7.4 mdfv4

91

438

mdfreader 2.7.4 nodata mdfv4

26847

204

mdfreader 2.7.4 compress mdfv4

517

138

Convert file

Time [ms]

RAM [MB]

asammdf 2.8.1 full v3 to v4

4995

750

asammdf 2.8.1 low v3 to v4

5646

330

asammdf 2.8.1 minimum v3 to v4

6902

161

asammdf 2.8.1 full v4 to v3

5750

751

asammdf 2.8.1 low v4 to v3

6572

313

asammdf 2.8.1 minimum v4 to v3

10229

133

Merge files

Time [ms]

RAM [MB]

asammdf 2.8.1 full v3

12050

1311

asammdf 2.8.1 low v3

14122

454

asammdf 2.8.1 minimum v3

16537

227

mdfreader 2.7.4 v3

14710

974

mdfreader 2.7.4 compress v3

19571

982

asammdf 2.8.1 full v4

17569

1431

asammdf 2.8.1 low v4

19297

548

asammdf 2.8.1 minimum v4

25442

227

mdfreader 2.7.4 v4

22324

971

mdfreader 2.7.4 nodata v4

21581

1013

mdfreader 2.7.4 compress v4

26916

974

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

asammdf-2.8.2.tar.gz (112.2 kB view details)

Uploaded Source

File details

Details for the file asammdf-2.8.2.tar.gz.

File metadata

  • Download URL: asammdf-2.8.2.tar.gz
  • Upload date:
  • Size: 112.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for asammdf-2.8.2.tar.gz
Algorithm Hash digest
SHA256 32c55b1cb2907e39649c02ee6b14b3dcb74584e1dd21f00d52d9e0c1d295d0d3
MD5 15b047fc59302e564b64a6a729af949f
BLAKE2b-256 37da3f1f7d36211c86e030f5b43797fa79ca477640b4c5798b5181ff6a86b1c2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page