Skip to main content

ASAM MDF measurement data file parser

Project description

asammdf is a fast parser and editor for ASAM (Associtation for Standardisation of Automation and Measuring Systems) MDF (Measurement Data Format) files.

asammdf supports MDF versions 2 (.dat), 3 (.mdf) and 4 (.mf4).

asammdf works on Python >= 3.6 (for Python 2.7, 3.4 and 3.5 see the 4.x.y releases)

Status

! Travis CI Appveyor CoverAlls Codacy ReadTheDocs
master Build Status Build status Coverage Status Codacy Badge Documentation Status
PyPI conda-forge
PyPI version conda-forge version

Project goals

The main goals for this library are:

  • to be faster than the other Python based mdf libraries
  • to have clean and easy to understand code base
  • to have minimal 3-rd party dependencies

Features

  • create new mdf files from scratch

  • append new channels

  • read unsorted MDF v3 and v4 files

  • read CAN and LIN bus logging files

  • extract CAN and LIN signals from anonymous bus logging measurements

  • filter a subset of channels from original mdf file

  • cut measurement to specified time interval

  • convert to different mdf version

  • export to HDF5, Matlab (v4, v5 and v7.3), CSV and parquet

  • merge multiple files sharing the same internal structure

  • read and save mdf version 4.10 files containing zipped data blocks

  • space optimizations for saved files (no duplicated blocks)

  • split large data blocks (configurable size) for mdf version 4

  • full support (read, append, save) for the following map types (multidimensional array channels):

    • mdf version 3 channels with CDBLOCK

    • mdf version 4 structure channel composition

    • mdf version 4 channel arrays with CNTemplate storage and one of the array types:

      • 0 - array
      • 1 - scaling axis
      • 2 - look-up
  • add and extract attachments for mdf version 4

  • handle large files (for example merging two fileas, each with 14000 channels and 5GB size, on a RaspberryPi)

  • extract channel data, master channel and extra channel information as Signal objects for unified operations with v3 and v4 files

  • time domain operation using the Signal class

    • Pandas data frames are good if all the channels have the same time based
    • a measurement will usually have channels from different sources at different rates
    • the Signal class facilitates operations with such channels
  • graphical interface to visualize channels and perform operations with the files

Major features not implemented (yet)

  • for version 3

    • functionality related to sample reduction block: the samples reduction blocks are simply ignored
  • for version 4

    • experiemental support for MDF v4.20 column oriented storage
    • functionality related to sample reduction block: the samples reduction blocks are simply ignored
    • handling of channel hierarchy: channel hierarchy is ignored
    • full handling of bus logging measurements: currently only CAN and LIN bus logging are implemented with the ability to get signals defined in the attached CAN/LIN database (.arxml or .dbc). Signals can also be extracted from an anonymous bus logging measurement by providing a CAN or LIN database (.dbc or .arxml)
    • handling of unfinished measurements (mdf 4): finalization is attempted when the file is loaded, however the not all the finalization steps are supported
    • full support for remaining mdf 4 channel arrays types
    • xml schema for MDBLOCK: most metadata stored in the comment blocks will not be available
    • full handling of event blocks: events are transfered to the new files (in case of calling methods that return new MDF objects) but no new events can be created
    • channels with default X axis: the defaukt X axis is ignored and the channel group's master channel is used
    • attachment encryption/decryption using user provided encryption/decryption functions; this is not part of the MDF v4 spec and is only supported by this library

Usage

from asammdf import MDF

mdf = MDF('sample.mdf')
speed = mdf.get('WheelSpeed')
speed.plot()

important_signals = ['WheelSpeed', 'VehicleSpeed', 'VehicleAcceleration']
# get short measurement with a subset of channels from 10s to 12s
short = mdf.filter(important_signals).cut(start=10, stop=12)

# convert to version 4.10 and save to disk
short.convert('4.10').save('important signals.mf4')

# plot some channels from a huge file
efficient = MDF('huge.mf4')
for signal in efficient.select(['Sensor1', 'Voltage3']):
   signal.plot()

Check the examples folder for extended usage demo, or the documentation http://asammdf.readthedocs.io/en/master/examples.html

https://canlogger.csselectronics.com/canedge-getting-started/log-file-tools/asammdf-api/

Documentation

http://asammdf.readthedocs.io/en/master

And a nicely written tutorial on the CSS Electronics site

Contributing & Support

Please have a look over the contributing guidelines

If you enjoy this library please consider making a donation to the numpy project or to danielhrisca using liberapay <a href="https://liberapay.com/danielhrisca/donate"><img alt="Donate using Liberapay" src="https://liberapay.com/assets/widgets/donate.svg"></a>

Contributors

Thanks to all who contributed with commits to asammdf:

Installation

asammdf is available on

pip install asammdf
# for the GUI 
pip install asammdf[gui]
# or for anaconda
conda install -c conda-forge asammdf

In case a wheel is not present for you OS/Python versions and you lack the proper compiler setup to compile the c-extension code, then you can simply copy-paste the pacakge code to your site-packages. In this way the python fallback code will be used instead of the compiled c-extension code.

Dependencies

asammdf uses the following libraries

  • numpy : the heart that makes all tick
  • numexpr : for algebraic and rational channel conversions
  • wheel : for installation in virtual environments
  • pandas : for DataFrame export
  • canmatrix : to handle CAN/LIN bus logging measurements
  • natsort
  • lxml : for canmatrix arxml support
  • lz4 : to speed up the disk IO peformance

optional dependencies needed for exports

  • h5py : for HDF5 export
  • scipy : for Matlab v4 and v5 .mat export
  • hdf5storage : for Matlab v7.3 .mat export
  • fastparquet : for parquet export

other optional dependencies

  • PyQt5 : for GUI tool
  • pyqtgraph : for GUI tool and Signal plotting
  • matplotlib : as fallback for Signal plotting
  • cChardet : to detect non-standard unicode encodings
  • chardet : to detect non-standard unicode encodings
  • pyqtlet : for GPS window

Benchmarks

http://asammdf.readthedocs.io/en/master/benchmarks.html

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

asammdf-6.3.2.tar.gz (554.0 kB view details)

Uploaded Source

Built Distributions

asammdf-6.3.2-cp39-cp39-win_amd64.whl (611.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

asammdf-6.3.2-cp39-cp39-win32.whl (610.7 kB view details)

Uploaded CPython 3.9 Windows x86

asammdf-6.3.2-cp39-cp39-macosx_10_15_x86_64.whl (608.7 kB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

asammdf-6.3.2-cp39-cp39-macosx_10_14_x86_64.whl (608.5 kB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

asammdf-6.3.2-cp38-cp38-win_amd64.whl (611.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

asammdf-6.3.2-cp38-cp38-win32.whl (610.6 kB view details)

Uploaded CPython 3.8 Windows x86

asammdf-6.3.2-cp38-cp38-macosx_10_15_x86_64.whl (608.7 kB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

asammdf-6.3.2-cp38-cp38-macosx_10_14_x86_64.whl (608.5 kB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

asammdf-6.3.2-cp37-cp37m-win_amd64.whl (611.4 kB view details)

Uploaded CPython 3.7m Windows x86-64

asammdf-6.3.2-cp37-cp37m-win32.whl (610.6 kB view details)

Uploaded CPython 3.7m Windows x86

asammdf-6.3.2-cp37-cp37m-macosx_10_15_x86_64.whl (608.7 kB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

asammdf-6.3.2-cp37-cp37m-macosx_10_14_x86_64.whl (608.5 kB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

asammdf-6.3.2-cp36-cp36m-win_amd64.whl (611.4 kB view details)

Uploaded CPython 3.6m Windows x86-64

asammdf-6.3.2-cp36-cp36m-win32.whl (610.6 kB view details)

Uploaded CPython 3.6m Windows x86

asammdf-6.3.2-cp36-cp36m-macosx_10_15_x86_64.whl (608.7 kB view details)

Uploaded CPython 3.6m macOS 10.15+ x86-64

asammdf-6.3.2-cp36-cp36m-macosx_10_14_x86_64.whl (608.5 kB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file asammdf-6.3.2.tar.gz.

File metadata

  • Download URL: asammdf-6.3.2.tar.gz
  • Upload date:
  • Size: 554.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.7

File hashes

Hashes for asammdf-6.3.2.tar.gz
Algorithm Hash digest
SHA256 8cfd1868b3e1f0f0f78db6ea4606b0f7db2cb0ffa3d81345bd0e554c86d36448
MD5 dc01a3e60e545dbc044c2cfcb36e7c8e
BLAKE2b-256 1dbb9b8b3a39b45b8614876432f5eacf3940095d2201fa5e7db1280fd2b91ac2

See more details on using hashes here.

File details

Details for the file asammdf-6.3.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: asammdf-6.3.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 611.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.7

File hashes

Hashes for asammdf-6.3.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 58b8823d5adb5f783ecc5b886e83fc48f7261e562188d12d4c2a5b257e38bfa0
MD5 dfecc896f5b9712fe6e621a751a34c2c
BLAKE2b-256 91f411a3deb97b6633388f3fa2542a13043e324380a2915928650d8ab5adf5cd

See more details on using hashes here.

File details

Details for the file asammdf-6.3.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: asammdf-6.3.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 610.7 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.7

File hashes

Hashes for asammdf-6.3.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 6bb4b8027da89a29eb131ef87d2b3e7d24515f5ff028627fd1d8f60112ff579f
MD5 6e6c6154a36698fd5d4ac9732f0bf5eb
BLAKE2b-256 e23895a1a3bec81677cd1ec24dff9155786cbacdead1f414b62dbd071b487f43

See more details on using hashes here.

File details

Details for the file asammdf-6.3.2-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: asammdf-6.3.2-cp39-cp39-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 608.7 kB
  • Tags: CPython 3.9, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.7

File hashes

Hashes for asammdf-6.3.2-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 bf4770b4a47245ba88284abd7d816a70d63c0822f090fbf87d81cc10a8640cb6
MD5 25366d0b616958af5225fadda24bfa16
BLAKE2b-256 c09ab9a3c83bfe080c028ffd9771f8eeeb59630ecfa2c1b866ecb12fe9e5ad64

See more details on using hashes here.

File details

Details for the file asammdf-6.3.2-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: asammdf-6.3.2-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 608.5 kB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.7

File hashes

Hashes for asammdf-6.3.2-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6bfe2dea40312df6645e3c2d7142fa4338c0fe24b90f6d67bb92537ebfab20fe
MD5 e66a603f2c397069790c3720f75cc92e
BLAKE2b-256 65f67328cb3ef1ee61b251ab2ae853de99b9286038b5063064c70696aeb3d610

See more details on using hashes here.

File details

Details for the file asammdf-6.3.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: asammdf-6.3.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 611.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.7

File hashes

Hashes for asammdf-6.3.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9179dfeb2e848690df970922e734953b953a17a08de4b07a2d9332747e3877c8
MD5 b81230d2e65fc51c3559b47120d75199
BLAKE2b-256 0df89c1a3221039f724ed0cbf673f4a03673e2cc0fda4ae8e9ff074205df3ac5

See more details on using hashes here.

File details

Details for the file asammdf-6.3.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: asammdf-6.3.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 610.6 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.7

File hashes

Hashes for asammdf-6.3.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 f3de44daa0a4f3ed4e30b03ed1ce786a825efdf8a80ccdcad2faf0ca43378426
MD5 203f7b29e43eb0b65aa15dd91d59714c
BLAKE2b-256 abfed27082428a26229ca67b325e5e0a8237b1af2c6c550357c68c54bf91cc33

See more details on using hashes here.

File details

Details for the file asammdf-6.3.2-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: asammdf-6.3.2-cp38-cp38-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 608.7 kB
  • Tags: CPython 3.8, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.7

File hashes

Hashes for asammdf-6.3.2-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b69315f184dd2d1e6854a783dcc67552778aa862dfa99c5440b7f07e97dba888
MD5 4a4ccb658bd16f505981847bfb0671a4
BLAKE2b-256 d886c5c3cf6e07285f105f767d8beb145a878bcdd1766c37d18457a1c2a43426

See more details on using hashes here.

File details

Details for the file asammdf-6.3.2-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: asammdf-6.3.2-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 608.5 kB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.7

File hashes

Hashes for asammdf-6.3.2-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 88b1a8aa9cebb1e26c1cb70710baf7e5a2f0e267f62617edad668ea6b1f1fcb2
MD5 660d174249f899c808e94427211569ab
BLAKE2b-256 35e54037459304a6a21e17d513d7b3ae92541fd98fdda97437aa3fe9f2073940

See more details on using hashes here.

File details

Details for the file asammdf-6.3.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: asammdf-6.3.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 611.4 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.7

File hashes

Hashes for asammdf-6.3.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a422419819b695f40478d01727badb48e72c89a636d02de4aeed4aca30a05920
MD5 944a8713710026eb0c6658e7e0b8a8bd
BLAKE2b-256 02d6d83a8c696c5d2980bc698d24e186604ab4eac69289a4a1beebd46a5ab96e

See more details on using hashes here.

File details

Details for the file asammdf-6.3.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: asammdf-6.3.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 610.6 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.7

File hashes

Hashes for asammdf-6.3.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 4b86d07a785467b70006d8566f912d4e42a4342e4454c393fca801f1456545c6
MD5 5c9da4ca084c9c63814657318da0852e
BLAKE2b-256 741a6a83ffaae3cc9380a57731d6750c54da306704bc655218cf8aba846aeccf

See more details on using hashes here.

File details

Details for the file asammdf-6.3.2-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: asammdf-6.3.2-cp37-cp37m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 608.7 kB
  • Tags: CPython 3.7m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.7

File hashes

Hashes for asammdf-6.3.2-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 aa7623f5058d3696a8cb5572b74c54f87fc515b5d906cd5d6290d71bcf5ed490
MD5 5fec8ee521052abdbe5d1e79b3b8a5e5
BLAKE2b-256 045749660da5cc19a47334fc671d82fd8e7f328ae1a179ee98cde5064f302bc9

See more details on using hashes here.

File details

Details for the file asammdf-6.3.2-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: asammdf-6.3.2-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 608.5 kB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.7

File hashes

Hashes for asammdf-6.3.2-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c7dc1fc30c80c2c08c397a1ac3a2918f5e46699809b92ae7d3ec6b632854d9b9
MD5 95705fdb0a005fe97769514849e56bbd
BLAKE2b-256 f1dd111a07c53911117fd8dc6ffef4eb44d6d6f326f23caed4d5531ae601bfbc

See more details on using hashes here.

File details

Details for the file asammdf-6.3.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: asammdf-6.3.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 611.4 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.7

File hashes

Hashes for asammdf-6.3.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 249d8ea81305e490bef037f8ab4901efdf5cf9dd43c38bc838bb9fcaf69a979b
MD5 eef93aee9a0a69c1e5082de9b36a6789
BLAKE2b-256 407edf71d360af107e4ef2587fd7fe7b21a33aaf5def288a114e14e1601baccf

See more details on using hashes here.

File details

Details for the file asammdf-6.3.2-cp36-cp36m-win32.whl.

File metadata

  • Download URL: asammdf-6.3.2-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 610.6 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.7

File hashes

Hashes for asammdf-6.3.2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 27cc2268ccecb9ef7cad9da9195b8669b4253e259252ea5d0e339ecf05a401be
MD5 f2c127c4346a9188bf342b7375a31768
BLAKE2b-256 cd569053f7e8627e1312c1f6fc5d82ef8ffd9ceb1b2e2dfbdbe82eaf3df6e2b1

See more details on using hashes here.

File details

Details for the file asammdf-6.3.2-cp36-cp36m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: asammdf-6.3.2-cp36-cp36m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 608.7 kB
  • Tags: CPython 3.6m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.7

File hashes

Hashes for asammdf-6.3.2-cp36-cp36m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 813b644827f9aa2c7e67f5d04730b5093239c33e830af4c2b3d216c6140c540c
MD5 e349147920a2a83deede3417b67dab99
BLAKE2b-256 bac45b44890998d3a06e1c4bfb97e0bcbadf189f7a469044dc0c54decb504f75

See more details on using hashes here.

File details

Details for the file asammdf-6.3.2-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: asammdf-6.3.2-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 608.5 kB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.7

File hashes

Hashes for asammdf-6.3.2-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e5c99dbcf4c915bfe0aa2021f9aa620f7adad89e87f564638d99a74f26df4109
MD5 b331ec9e7e415126bdb4b5163f220b85
BLAKE2b-256 71752129c9863f63118bd56de343d1776dd48d59a42ccf3ad0b1a92330ddc9d4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page