Skip to main content

ASAM MDF measurement data file parser

Project description

asammdf is a fast parser and editor for ASAM (Association for Standardization of Automation and Measuring Systems) MDF (Measurement Data Format) files.

asammdf supports MDF versions 2 (.dat), 3 (.mdf) and 4 (.mf4).

asammdf works on Python >= 3.8

Status

Continuous Integration Coveralls Codacy ReadTheDocs
continuous integration Coverage Status Codacy Badge Documentation Status
PyPI conda-forge
PyPI version conda-forge version

Project goals

The main goals for this library are:

  • to be faster than the other Python based mdf libraries
  • to have clean and easy to understand code base
  • to have minimal 3-rd party dependencies

Features

  • create new mdf files from scratch

  • append new channels

  • read unsorted MDF v3 and v4 files

  • read CAN and LIN bus logging files

  • extract CAN and LIN signals from anonymous bus logging measurements

  • filter a subset of channels from original mdf file

  • cut measurement to specified time interval

  • convert to different mdf version

  • export to HDF5, Matlab (v4, v5 and v7.3), CSV and parquet

  • merge multiple files sharing the same internal structure

  • read and save mdf version 4.10 files containing zipped data blocks

  • space optimizations for saved files (no duplicated blocks)

  • split large data blocks (configurable size) for mdf version 4

  • full support (read, append, save) for the following map types (multidimensional array channels):

    • mdf version 3 channels with CDBLOCK

    • mdf version 4 structure channel composition

    • mdf version 4 channel arrays with CNTemplate storage and one of the array types:

      • 0 - array
      • 1 - scaling axis
      • 2 - look-up
  • add and extract attachments for mdf version 4

  • handle large files (for example merging two fileas, each with 14000 channels and 5GB size, on a RaspberryPi)

  • extract channel data, master channel and extra channel information as Signal objects for unified operations with v3 and v4 files

  • time domain operation using the Signal class

    • Pandas data frames are good if all the channels have the same time based
    • a measurement will usually have channels from different sources at different rates
    • the Signal class facilitates operations with such channels
  • graphical interface to visualize channels and perform operations with the files

Major features not implemented (yet)

  • for version 3

    • functionality related to sample reduction block: the samples reduction blocks are simply ignored
  • for version 4

    • experimental support for MDF v4.20 column oriented storage
    • functionality related to sample reduction block: the samples reduction blocks are simply ignored
    • handling of channel hierarchy: channel hierarchy is ignored
    • full handling of bus logging measurements: currently only CAN and LIN bus logging are implemented with the ability to get signals defined in the attached CAN/LIN database (.arxml or .dbc). Signals can also be extracted from an anonymous bus logging measurement by providing a CAN or LIN database (.dbc or .arxml)
    • handling of unfinished measurements (mdf 4): finalization is attempted when the file is loaded, however the not all the finalization steps are supported
    • full support for remaining mdf 4 channel arrays types
    • xml schema for MDBLOCK: most metadata stored in the comment blocks will not be available
    • full handling of event blocks: events are transferred to the new files (in case of calling methods that return new MDF objects) but no new events can be created
    • channels with default X axis: the default X axis is ignored and the channel group's master channel is used
    • attachment encryption/decryption using user provided encryption/decryption functions; this is not part of the MDF v4 spec and is only supported by this library

Usage

from asammdf import MDF

mdf = MDF('sample.mdf')
speed = mdf.get('WheelSpeed')
speed.plot()

important_signals = ['WheelSpeed', 'VehicleSpeed', 'VehicleAcceleration']
# get short measurement with a subset of channels from 10s to 12s
short = mdf.filter(important_signals).cut(start=10, stop=12)

# convert to version 4.10 and save to disk
short.convert('4.10').save('important signals.mf4')

# plot some channels from a huge file
efficient = MDF('huge.mf4')
for signal in efficient.select(['Sensor1', 'Voltage3']):
   signal.plot()

Check the examples folder for extended usage demo, or the documentation http://asammdf.readthedocs.io/en/master/examples.html

https://canlogger.csselectronics.com/canedge-getting-started/log-file-tools/asammdf-api/

Documentation

http://asammdf.readthedocs.io/en/master

And a nicely written tutorial on the CSS Electronics site

Contributing & Support

Please have a look over the contributing guidelines

If you enjoy this library please consider making a donation to the numpy project or to danielhrisca using liberapay <a href="https://liberapay.com/danielhrisca/donate"><img alt="Donate using Liberapay" src="https://liberapay.com/assets/widgets/donate.svg"></a>

Contributors

Thanks to all who contributed with commits to asammdf:

Installation

asammdf is available on

pip install asammdf
# for the GUI 
pip install asammdf[gui]
# or for anaconda
conda install -c conda-forge asammdf

In case a wheel is not present for you OS/Python versions and you lack the proper compiler setup to compile the c-extension code, then you can simply copy-paste the package code to your site-packages. In this way the python fallback code will be used instead of the compiled c-extension code.

Dependencies

asammdf uses the following libraries

  • numpy : the heart that makes all tick
  • numexpr : for algebraic and rational channel conversions
  • wheel : for installation in virtual environments
  • pandas : for DataFrame export
  • canmatrix : to handle CAN/LIN bus logging measurements
  • natsort
  • lxml : for canmatrix arxml support
  • lz4 : to speed up the disk IO performance
  • python-dateutil : measurement start time handling

optional dependencies needed for exports

  • h5py : for HDF5 export
  • scipy : for Matlab v4 and v5 .mat export
  • hdf5storage : for Matlab v7.3 .mat export
  • fastparquet : for parquet export

other optional dependencies

  • PySide6 : for GUI tool
  • pyqtgraph : for GUI tool and Signal plotting
  • matplotlib : as fallback for Signal plotting
  • cChardet : to detect non-standard Unicode encodings
  • chardet : to detect non-standard Unicode encodings
  • pyqtlet2 : for the GPS window
  • isal : for faster zlib compression/decompression

Benchmarks

http://asammdf.readthedocs.io/en/master/benchmarks.html

Project details


Release history Release notifications | RSS feed

This version

7.2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

asammdf-7.2.0.tar.gz (701.4 kB view details)

Uploaded Source

Built Distributions

asammdf-7.2.0-cp311-cp311-win_amd64.whl (975.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

asammdf-7.2.0-cp310-cp310-win_amd64.whl (780.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

asammdf-7.2.0-cp310-cp310-macosx_10_15_x86_64.whl (775.0 kB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

asammdf-7.2.0-cp39-cp39-win_amd64.whl (780.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

asammdf-7.2.0-cp39-cp39-macosx_10_15_x86_64.whl (775.0 kB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

asammdf-7.2.0-cp38-cp38-win_amd64.whl (780.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

asammdf-7.2.0-cp38-cp38-macosx_10_15_x86_64.whl (775.0 kB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

asammdf-7.2.0-9-cp311-cp311-win_amd64.whl (782.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

asammdf-7.2.0-9-cp311-cp311-macosx_10_9_universal2.whl (786.2 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

asammdf-7.2.0-9-cp310-cp310-win_amd64.whl (782.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

asammdf-7.2.0-9-cp310-cp310-macosx_10_15_x86_64.whl (776.6 kB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

asammdf-7.2.0-9-cp39-cp39-win_amd64.whl (782.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

asammdf-7.2.0-9-cp39-cp39-macosx_10_15_x86_64.whl (776.6 kB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

asammdf-7.2.0-9-cp38-cp38-win_amd64.whl (782.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

asammdf-7.2.0-9-cp38-cp38-macosx_10_15_x86_64.whl (776.6 kB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

asammdf-7.2.0-8-cp311-cp311-win_amd64.whl (782.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

asammdf-7.2.0-8-cp311-cp311-macosx_10_9_universal2.whl (786.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

asammdf-7.2.0-8-cp310-cp310-win_amd64.whl (782.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

asammdf-7.2.0-8-cp310-cp310-macosx_10_15_x86_64.whl (776.6 kB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

asammdf-7.2.0-8-cp39-cp39-win_amd64.whl (782.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

asammdf-7.2.0-8-cp39-cp39-macosx_10_15_x86_64.whl (776.6 kB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

asammdf-7.2.0-8-cp38-cp38-win_amd64.whl (782.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

asammdf-7.2.0-8-cp38-cp38-macosx_10_15_x86_64.whl (776.6 kB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

asammdf-7.2.0-7-cp311-cp311-win_amd64.whl (782.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

asammdf-7.2.0-7-cp311-cp311-macosx_10_9_universal2.whl (786.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

asammdf-7.2.0-7-cp310-cp310-win_amd64.whl (782.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

asammdf-7.2.0-7-cp310-cp310-macosx_10_15_x86_64.whl (776.6 kB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

asammdf-7.2.0-7-cp39-cp39-win_amd64.whl (782.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

asammdf-7.2.0-7-cp39-cp39-macosx_10_15_x86_64.whl (776.6 kB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

asammdf-7.2.0-7-cp38-cp38-win_amd64.whl (782.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

asammdf-7.2.0-7-cp38-cp38-macosx_10_15_x86_64.whl (776.6 kB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

asammdf-7.2.0-6-cp310-cp310-win_amd64.whl (976.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

asammdf-7.2.0-5-cp311-cp311-win_amd64.whl (975.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

asammdf-7.2.0-5-cp310-cp310-win_amd64.whl (975.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

asammdf-7.2.0-5-cp310-cp310-macosx_10_15_x86_64.whl (775.1 kB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

asammdf-7.2.0-5-cp39-cp39-win_amd64.whl (781.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

asammdf-7.2.0-5-cp39-cp39-macosx_10_15_x86_64.whl (775.1 kB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

asammdf-7.2.0-5-cp38-cp38-win_amd64.whl (781.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

asammdf-7.2.0-5-cp38-cp38-macosx_10_15_x86_64.whl (775.1 kB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

asammdf-7.2.0-4-cp310-cp310-win_amd64.whl (975.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

asammdf-7.2.0-3-cp310-cp310-win_amd64.whl (975.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

asammdf-7.2.0-2-cp310-cp310-win_amd64.whl (975.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

asammdf-7.2.0-1-cp311-cp311-win_amd64.whl (975.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

asammdf-7.2.0-1-cp310-cp310-win_amd64.whl (975.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

asammdf-7.2.0-1-cp310-cp310-macosx_10_15_x86_64.whl (775.0 kB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

asammdf-7.2.0-1-cp39-cp39-win_amd64.whl (780.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

asammdf-7.2.0-1-cp39-cp39-macosx_10_15_x86_64.whl (775.0 kB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

asammdf-7.2.0-1-cp38-cp38-win_amd64.whl (780.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

asammdf-7.2.0-1-cp38-cp38-macosx_10_15_x86_64.whl (775.0 kB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file asammdf-7.2.0.tar.gz.

File metadata

  • Download URL: asammdf-7.2.0.tar.gz
  • Upload date:
  • Size: 701.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.2.0.tar.gz
Algorithm Hash digest
SHA256 a6a9ea6b4c1d59b67ac16568f4447f21c147dbdeb44d3246b905236a146b48ac
MD5 1303b76fb0cf24cb8e1690cbb64186c7
BLAKE2b-256 8fec97ae728992b3ee3efb1e01e354f31fc034b7d72dea87fb486a3e411ba93a

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: asammdf-7.2.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 975.0 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.2.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 75d531141b199e4a8ddd647c512e9407e390a71be0140b0cd788fbfd4abb28b3
MD5 c4e6b0784822eba7903e758b1b89dd42
BLAKE2b-256 02f1fab488f747b9ee8f78094c4a45181bb49a5d2bb3bd1715a3d1461badb842

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: asammdf-7.2.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 780.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ecc281d33050db5da7d09c4cb053de6227cb88a2e4953bb00395d74e7d9eb38a
MD5 618572e34066ef112000694d23966341
BLAKE2b-256 a6a505aa2eeb3e12a6b899ce34a815455750fcbf7098b2e44166b02f28192a0a

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 1ef614537c9707c6f68a2c89d93a04dfe7b5b98ada6352e84f40a077b15e7173
MD5 8b50933f4122a7d4e236d4acddb1f6fd
BLAKE2b-256 61047c3a6fb410fea9b3840c36ce5e2d10f69b8de4cbce7f2f41263c54cc8250

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: asammdf-7.2.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 780.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d73a9bdd06fa2b2910491065337f5014fb47bc6df88933f1941f6d9280765a84
MD5 b6c591719f98d5c562fe39deb4dc4803
BLAKE2b-256 56d35c771d15eb6d3761d1bd9d59dc5eef8d90aaa957c76151c905d264325562

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 489e6f7e8b4b2b493e2d0c9a569fca87f34bb6b3991eefa7d4281b6544fdf11a
MD5 73312fd85cda952cdf7e66a0b1110958
BLAKE2b-256 437ff996e9623c3e6adcb9a526e42cf154bcf463300865475c0e9b048738832f

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: asammdf-7.2.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 780.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.2.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 726532008c759b5ed042be55e99d05d18da5f811468dd445a12e3ea51a03abe5
MD5 4828e58705d295258e92eac389b28459
BLAKE2b-256 8b1827b37d200a8f19b43117308d4534da8e089b6487c1f7506a3e8d1aa2d814

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 1856835dfd76c404f145bd9bd7d240584b68709470537bed8bdd252c50c0251a
MD5 c24bde5fe9aae9df3c8d9440fd9f25f6
BLAKE2b-256 94bfebf6a295105941f24c526445d7548ed9de942a132f30c6051bede8089878

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-9-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-9-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 db9ba57f386e8e8c49fd9d1ec4e4ee7f96cc3ac2e79b8214178e06f7c9d75579
MD5 2b6f0947b049a4bc4ce3ba798c490cc3
BLAKE2b-256 539fedbc752c48e7cc87bda0440a87d13f37d0b6a9574a0d04b2ebcbbbc72e54

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-9-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-9-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 2b9d88c2d2d7f8cee01cd7d820f19dfe5d006fde4e9457aed5b41f1d6b77b6ea
MD5 57e33a1cf0797c13a4c24617fb70ce20
BLAKE2b-256 96406965c94425dcd8c3b84ccf9d932b4f88fb9c62a51e9c499d952d6c3b3552

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-9-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-9-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 baa66a737576137d60dbd843b3242595c66d7a9ab38ee767db8414f459b4f408
MD5 842c5dba912cafdc5d0c667a47a1b010
BLAKE2b-256 df3111764699139d0201250a315561bec8cfed8b508cd8db3c78cda86f933daa

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-9-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-9-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b00ce907219506e217912adab08932a0803b5a509cc0f4aa84a0cbe12bd5d053
MD5 d4b416143238dfa98f6c4aeffc217bb5
BLAKE2b-256 fda9cf5b9902ce4a16e316c2d5b9a439b294de4d9d39dc4835c57f67feb02962

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-9-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: asammdf-7.2.0-9-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 782.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.2.0-9-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d2bc8b49c1b09cb9a3cb51b3d1c56e4b5e9ac3518d2146695c5be5a6aa30d84b
MD5 e99fed13e413595f2816d1ed8a5d5a0a
BLAKE2b-256 626e7c988317ce02f3ec5761e9b332f261c17e3da618f5db25e66547e0f5eeee

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-9-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-9-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 a4f762f74399029ee26cbc98ee35985fd21473e2e8547e223d4576e5aafd8407
MD5 e2bd1786466ffa679041dbc9c3429c47
BLAKE2b-256 a57c94840240b1f6429b44451a0a35340daeb77f9b8db0782764717bf19989f2

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-9-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: asammdf-7.2.0-9-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 782.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.2.0-9-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9cf863a15e45a5b2714a599ae0cf776db320e365d7b087c2156f5fb4158b316a
MD5 538417e78ecb24a05036fc7e46ac2b03
BLAKE2b-256 45f7ebe594abb4d1adfdaf9892f76633f51d3498e0787379510ff008f660da1f

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-9-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-9-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 06c80da72e1275663d7a09ff9dad6c586777227762519124ea360cf30c9c965b
MD5 273a14596861a38ece9ef8dd9962228e
BLAKE2b-256 aa4a2560111ff978f061cb68180e53b3f7b60478dcb1ec2bc86323104c786bf6

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-8-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-8-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 36558bfa4658fde56a50a5e1396db6f3eeb69d3f9bf87a39630198c49e320342
MD5 142285105cfee728441416c564b43c1a
BLAKE2b-256 d016289fb152e5f5f89cc3e48699ea073b1cca7f34b970c98282fdfc366999bb

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-8-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-8-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b39b504df2568cad180d4b45240b4eee90a40fca2ff7463f8b5e5f9f2ec2c1ba
MD5 c9d44553a8490fe1f60f49395f4265be
BLAKE2b-256 27ff7bee1cb7347331dbe57251b7ac263218129d3a194e32f255272c0486aa2c

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-8-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-8-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 aae30187b04bd36ac391dc15948057e952bdacc4f185e8bce1def41ef11347e9
MD5 3e9cd7553193800de359accd2c77cb8f
BLAKE2b-256 edc03060b0edb049f17f2d4d24a63ac2f817ba921521388227b5c3a4ba90c344

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-8-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-8-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 4000abd585bc949193c0b8cfc70cc3e91634eac07f15c474be06c392fd2fb123
MD5 c73b2928725150feb69d833db4116d21
BLAKE2b-256 e2ea5c3c7aa7e0745d625cb0bd0ff90d91680031b44d16565991262c58184ade

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-8-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: asammdf-7.2.0-8-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 782.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.2.0-8-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d5070e7383ec24b178446607f47076012f4fb807ca48fcc90fd61f95e3a422e6
MD5 d47c8661271f9ceecefc2050764d68ee
BLAKE2b-256 8f1bb182d512177a644c84bf3bbbb360625b2dfb8804d4dcc4727e3c3ce12163

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-8-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-8-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 eaea1192f1d929b333b1169e250540107ba990e2b0e237db6f25ad0d491e8d56
MD5 283f144fcb1cc8f5abb3b16c607c6771
BLAKE2b-256 586bcd0b18bb4babee1be51b1c9e68c32550647295cc84508356471f14f4e7ca

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-8-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: asammdf-7.2.0-8-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 782.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.2.0-8-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a310aa1e629d140b90a352aa49689222f49fe929e5078f71e9084a6f0525672a
MD5 fe79a3fea124574ea813a67c3b62b9ec
BLAKE2b-256 ff97a4b20a03d98ae45d7d441462b399b524bd2b970a3cebdf11ee7cd72c926d

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-8-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-8-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 adb8d158a181a22e79ba7b6ef94775a8b106968c008a857aa00a22d822bf8eb4
MD5 3b69c1fc77c6876e96db14e24319311c
BLAKE2b-256 7591e71d451acbec6f50df5e3b9dc229ebfd42b59d566a84ca6438469c6111a5

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-7-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-7-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3d0047819b630d0c09672fd1f4ab07d40a6ca1d50c12be60f442fde4ee534d6c
MD5 e476c2d113c90d5d8f5098a9673dee92
BLAKE2b-256 3894ffe878cf2623d38b35dd82990bc1d63b8f7b4f9740bb9d1366d7d14f7e7d

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-7-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-7-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3f7b821d1578756ec6bcdc118b60d3a11757e40607b4a99053a48f010b85fbe7
MD5 aea6a3329763a40397db32fac1114f03
BLAKE2b-256 639cc95b812a8e09ecd941d1437dad2e83a742e94681ab3a5947cddf73b96aae

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-7-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-7-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 55a976d44efa840acee1cc509bf349dfa5899704a765c8867267fa88cee831ca
MD5 73f4bb039f26aa23721c20bfef83370f
BLAKE2b-256 4a5d00ff554535afc3267637b5c99a70d01238e78078c2674d4ed21506790a2b

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-7-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-7-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 234bc9639fd696755d6bee0150ca30e4b95b3a052ffa8ccab54afe56f54bebbc
MD5 4cd9c673bfe50c870a4a2ec91dd86eaa
BLAKE2b-256 e33f37891dd1ace29f20f7992a06c312a06d4cd30a92421fc7f68e5071fe1a14

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-7-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: asammdf-7.2.0-7-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 782.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.2.0-7-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ee1f7c229a1198d2911d670d9ef55430cfdce6e943087cc0a84db3f7aed455cc
MD5 1327861c7c721fe9dfab66814ab9c349
BLAKE2b-256 0d7b657e6d7e506739503dec33a15baee4cdaefadaa40335eba8d1bdf2196229

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-7-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-7-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 41a027c8c269d110523795ca15a29256fc42cfdc609f863d879dfb89092479aa
MD5 89953e7054069086eb05e1ba40c3c2d0
BLAKE2b-256 ab587e9a6af137f1213281e04cc8a7ee0eb03045a8a7d34ccc58cf7a79c85919

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-7-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: asammdf-7.2.0-7-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 782.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.2.0-7-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 15f31ac707600edf5197c512b57e325e2c7961f5b4a9794bc650ae2e009db9fb
MD5 e1c1e5c47ae06c41ba5e180ed3f3aaf2
BLAKE2b-256 d1e59007ba3c44f91b9b102d236083b402b4177b99830b71e60ce2477be8f91e

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-7-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-7-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 205c03931406d8e4a02b7de0b00508fd761b3eea7610723b393d61c76e256b04
MD5 c97d93922a90e16856452a7fcce752f5
BLAKE2b-256 bb08a07e08411a9540cfa51c4ac01cdf021fcf9bdd2ba55d4df89b360221f46b

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-6-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-6-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2ba5d14c86fea3657debf5531f2a7591cd4ce065af3c571d79a80591aff3fcd3
MD5 f027c0804af32e9414ebedaae4825436
BLAKE2b-256 967cc353ffa6eac3e2d659cac220025c465d227b442191effc9fb0f83a6d0271

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-5-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4625f134eedf05f4a45fbf3275aecb5a49564b6e289ccfc9c209d4bbd5d2a305
MD5 cccbf12ed1f5e932f51b512769af7a49
BLAKE2b-256 f6288f672e44f67ea63354d56636326552290b6ca8ecaa5540cf36aab2e3c4d6

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-5-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6245e87f5ab9bcb3a08fb473e08f324faa22de71e9a6777c2ba70ed8ef482927
MD5 346c245e1eb21a141a32f50ab1f98a4d
BLAKE2b-256 5c0f064b06d8f518983cba8deba7f0338440dace23ff4cccf6bdfc3bdf423c40

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-5-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-5-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 c537d8196bc845feb2c9d4a20e3439af8cee2c5c48024a757c5b21c92ca07864
MD5 63e26d24cfeb63bf31423b082a6ec92d
BLAKE2b-256 1ff1b2696aa22c9b773c61796e9321f8abcdd6e39a0aed2b78edc2f9bb8dd6e7

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: asammdf-7.2.0-5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 781.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.2.0-5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f516b7f3f89a48d0784a2a43eb2a8967bbf3d610a3484279f833e72ab5e9c20d
MD5 d48b7a41043bd93216d28b6950b8c094
BLAKE2b-256 1c136d0ac8a459497c2535a0df3e9eef879f383c0f5813a17624d26ca564cf5c

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-5-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-5-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 ac9cf38b8efc2e23c9ede67ca216f1c9544ffe1e5751d791f36cf3897a0ac21c
MD5 3208d1036c56e1aab60bcbbfc930e14e
BLAKE2b-256 86f7efe365d4ad201177b6f9415216aaf7fbc38b2f34f11e0a6061efaa9efb0c

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: asammdf-7.2.0-5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 781.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.2.0-5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 807fba29d429d0cc8ce4bf6a9f921c3f7bfa4f2263b4ac81dd15720ea422aac0
MD5 a92de46e25b77b9f6a1ec81e939cc81f
BLAKE2b-256 c7d017d076451c72be8f1a3edb5a5b21b2683f138a95227d4efba663bc59345f

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-5-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-5-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 2c6963d52f0e86c64847f8325710344c82e7ced36fcece7ec7ef60e5b230ccb3
MD5 76e9f91e25d3abd4c0496a3e469ecccd
BLAKE2b-256 8c1c804481a6f8e39a974872426cf569a9342e08ea519e33969691ecf6060b51

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-4-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 fa22979fc53d69467e2e0bd1664620a40935b4582a8bf7195a4414a1e1991639
MD5 948c17f3b7407ca885b30df573e53a08
BLAKE2b-256 f0bd30da5c8fb627d525cc53c03bd0ab24dea18fea92db7fe1699fb5984ea279

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-3-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c00dc0fd395faa350823e2f37724ce8b3309eed74f55d66654ab7a02f418243b
MD5 ccc2d74e3a1f00d28ced30bf6792f13f
BLAKE2b-256 1105b68073016178820b06d3e6309cd851b5da05f2db9471ee235efa29b39ee7

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7f168d22b75401acd82326290764b729ee40bec83dfc4ab1653db0ab31f5c8d8
MD5 a2c045b2c6fbbf32a36e59d888004f33
BLAKE2b-256 f73de0fa68d6bdaf2a3bb6bedee76da155cb1b418f934188a4cf08414aa2af4c

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2c0c44f4b4b311cd994519cbd3169880e21076238d891e91c60989dc5386f971
MD5 04547b43105d308d36d51249d8255874
BLAKE2b-256 9e1fddbe878765bb303650431c511330ef9e9170e5175a868fa22270dc8bdbda

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8660bc4b1f2a1fa4124a4f3ee367a458b45f257eb1ce7f1598f5708499184fa0
MD5 86d842818ac57c40dfecff9276a0511c
BLAKE2b-256 0b7e1453b3d9fc50f52deceba85a57985cb94cb4cafa501d8bd2b6ef44682db9

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-1-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-1-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 0f5ca8c36f06603c1b25b5658c70b2204feb00b8f62f2ba52a208c57c67c2c4b
MD5 1e515c15ecc51cd3192d8d0a4f789497
BLAKE2b-256 b597d9f4a6a15e128b96334fc957afe74fac925b3a9a3419871baee83dde0151

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: asammdf-7.2.0-1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 780.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.2.0-1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2c660e5deb06cda5fd91569ad31bf9ae4b3142ca8e8577ed94555c23631a4688
MD5 4d9b09d34d7b012fbd9b29c3d797806b
BLAKE2b-256 0a9091cd5990d0c6bdf795ab3dcab251647d4dbad9685d09e96eb14bfb90adab

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-1-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-1-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 4e20561900b5028c3a41a54efd76199f39980e98460bd0a54379c7554f447f08
MD5 d8bd38e26ab5ab0f710b8165af7b273a
BLAKE2b-256 2124f7fc51573ed7004285392bff5e22f43e2a7b3b4ac5011b94d2a99af661c8

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: asammdf-7.2.0-1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 780.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.2.0-1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5cd859b9ce9fd6dc4fa0cb6e2e866afd3e6f27155dcbd12faa0230800d671625
MD5 8d480189c6999291b26e0425f78b0660
BLAKE2b-256 ad3335f75c9d21e95f9afda8ac21f14f370038713535a643744d925335fd06da

See more details on using hashes here.

File details

Details for the file asammdf-7.2.0-1-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.2.0-1-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 431c4ef0410f0bd020d5360b7359fa31b26d96b1433892b3b2d39be979fac7f5
MD5 ae7a6f5b0e8ff814165f436f1d928c7a
BLAKE2b-256 59737e3b98c4669ebe85f5672e926787298d6ffd4721cf5bdcfc966c69c19d68

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page