Skip to main content

ASAM MDF measurement data file parser

Project description

asammdf is a fast parser and editor for ASAM (Association for Standardization of Automation and Measuring Systems) MDF (Measurement Data Format) files.

asammdf supports MDF versions 2 (.dat), 3 (.mdf) and 4 (.mf4).

asammdf works on Python >= 3.8

Status

Continuous Integration Coveralls Codacy ReadTheDocs
continuous integration Coverage Status Codacy Badge Documentation Status
PyPI conda-forge
PyPI version conda-forge version

Project goals

The main goals for this library are:

  • to be faster than the other Python based mdf libraries
  • to have clean and easy to understand code base
  • to have minimal 3-rd party dependencies

Features

  • create new mdf files from scratch

  • append new channels

  • read unsorted MDF v3 and v4 files

  • read CAN and LIN bus logging files

  • extract CAN and LIN signals from anonymous bus logging measurements

  • filter a subset of channels from original mdf file

  • cut measurement to specified time interval

  • convert to different mdf version

  • export to HDF5, Matlab (v7.3), CSV and parquet

  • merge multiple files sharing the same internal structure

  • read and save mdf version 4.10 files containing zipped data blocks

  • space optimizations for saved files (no duplicated blocks)

  • split large data blocks (configurable size) for mdf version 4

  • full support (read, append, save) for the following map types (multidimensional array channels):

    • mdf version 3 channels with CDBLOCK

    • mdf version 4 structure channel composition

    • mdf version 4 channel arrays with CNTemplate storage and one of the array types:

      • 0 - array
      • 1 - scaling axis
      • 2 - look-up
  • add and extract attachments for mdf version 4

  • handle large files (for example merging two fileas, each with 14000 channels and 5GB size, on a RaspberryPi)

  • extract channel data, master channel and extra channel information as Signal objects for unified operations with v3 and v4 files

  • time domain operation using the Signal class

    • Pandas data frames are good if all the channels have the same time based
    • a measurement will usually have channels from different sources at different rates
    • the Signal class facilitates operations with such channels
  • graphical interface to visualize channels and perform operations with the files

Major features not implemented (yet)

  • for version 3

    • functionality related to sample reduction block: the samples reduction blocks are simply ignored
  • for version 4

    • experimental support for MDF v4.20 column oriented storage
    • functionality related to sample reduction block: the samples reduction blocks are simply ignored
    • handling of channel hierarchy: channel hierarchy is ignored
    • full handling of bus logging measurements: currently only CAN and LIN bus logging are implemented with the ability to get signals defined in the attached CAN/LIN database (.arxml or .dbc). Signals can also be extracted from an anonymous bus logging measurement by providing a CAN or LIN database (.dbc or .arxml)
    • handling of unfinished measurements (mdf 4): finalization is attempted when the file is loaded, however the not all the finalization steps are supported
    • full support for remaining mdf 4 channel arrays types
    • xml schema for MDBLOCK: most metadata stored in the comment blocks will not be available
    • full handling of event blocks: events are transferred to the new files (in case of calling methods that return new MDF objects) but no new events can be created
    • channels with default X axis: the default X axis is ignored and the channel group's master channel is used
    • attachment encryption/decryption using user provided encryption/decryption functions; this is not part of the MDF v4 spec and is only supported by this library

Usage

from asammdf import MDF

mdf = MDF('sample.mdf')
speed = mdf.get('WheelSpeed')
speed.plot()

important_signals = ['WheelSpeed', 'VehicleSpeed', 'VehicleAcceleration']
# get short measurement with a subset of channels from 10s to 12s
short = mdf.filter(important_signals).cut(start=10, stop=12)

# convert to version 4.10 and save to disk
short.convert('4.10').save('important signals.mf4')

# plot some channels from a huge file
efficient = MDF('huge.mf4')
for signal in efficient.select(['Sensor1', 'Voltage3']):
   signal.plot()

Check the examples folder for extended usage demo, or the documentation http://asammdf.readthedocs.io/en/master/examples.html

https://canlogger.csselectronics.com/canedge-getting-started/log-file-tools/asammdf-api/

Documentation

http://asammdf.readthedocs.io/en/master

And a nicely written tutorial on the CSS Electronics site

Contributing & Support

Please have a look over the contributing guidelines

If you enjoy this library please consider making a donation to the numpy project or to danielhrisca using liberapay <a href="https://liberapay.com/danielhrisca/donate"><img alt="Donate using Liberapay" src="https://liberapay.com/assets/widgets/donate.svg"></a>

Contributors

Thanks to all who contributed with commits to asammdf:

Installation

asammdf is available on

pip install asammdf
# for the GUI 
pip install asammdf[gui]
# or for anaconda
conda install -c conda-forge asammdf

In case a wheel is not present for you OS/Python versions and you lack the proper compiler setup to compile the c-extension code, then you can simply copy-paste the package code to your site-packages. In this way the python fallback code will be used instead of the compiled c-extension code.

Dependencies

asammdf uses the following libraries

  • numpy : the heart that makes all tick
  • numexpr : for algebraic and rational channel conversions
  • wheel : for installation in virtual environments
  • pandas : for DataFrame export
  • canmatrix : to handle CAN/LIN bus logging measurements
  • natsort
  • lxml : for canmatrix arxml support
  • lz4 : to speed up the disk IO performance
  • python-dateutil : measurement start time handling

optional dependencies needed for exports

  • h5py : for HDF5 export
  • hdf5storage : for Matlab v7.3 .mat export
  • fastparquet : for parquet export
  • scipy: for Matlab v4 and v5 .mat export

other optional dependencies

  • PySide6 : for GUI tool
  • pyqtgraph : for GUI tool and Signal plotting
  • matplotlib : as fallback for Signal plotting
  • cChardet : to detect non-standard Unicode encodings
  • chardet : to detect non-standard Unicode encodings
  • pyqtlet2 : for the GPS window
  • isal : for faster zlib compression/decompression
  • fsspec : access files stored in the cloud

Benchmarks

http://asammdf.readthedocs.io/en/master/benchmarks.html

Project details


Release history Release notifications | RSS feed

This version

7.3.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

asammdf-7.3.1.tar.gz (718.1 kB view details)

Uploaded Source

Built Distributions

asammdf-7.3.1-cp311-cp311-win_amd64.whl (802.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

asammdf-7.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (826.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

asammdf-7.3.1-cp311-cp311-macosx_10_9_x86_64.whl (796.2 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

asammdf-7.3.1-cp310-cp310-win_amd64.whl (802.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

asammdf-7.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (825.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

asammdf-7.3.1-cp310-cp310-macosx_10_9_x86_64.whl (796.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

asammdf-7.3.1-cp39-cp39-win_amd64.whl (802.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

asammdf-7.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (825.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

asammdf-7.3.1-cp39-cp39-macosx_10_9_x86_64.whl (796.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

asammdf-7.3.1-cp38-cp38-win_amd64.whl (802.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

asammdf-7.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (825.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

asammdf-7.3.1-cp38-cp38-macosx_10_9_x86_64.whl (796.2 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file asammdf-7.3.1.tar.gz.

File metadata

  • Download URL: asammdf-7.3.1.tar.gz
  • Upload date:
  • Size: 718.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.3.1.tar.gz
Algorithm Hash digest
SHA256 f83122c13d6294ea2e33360727d45e6ebf89c056f1e3a16bf719e406b7565f21
MD5 07b7b563f0ca66856cdd049f5c12a970
BLAKE2b-256 0dbeb7a2d1371b6d214f82abffc3f040ca3510bd031a9ca53576fa11aa8fb694

See more details on using hashes here.

File details

Details for the file asammdf-7.3.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: asammdf-7.3.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 802.8 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.3.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e8795cc6a0dd5222c79c3a54c4bd90df852933ea168fff557ede88f8d4e0ebf6
MD5 af55b1592bd9bd35a38e977c6e5596fd
BLAKE2b-256 f51227d2758dae42d595fdc599365df4fcd0462473ac585a53c189667678a36d

See more details on using hashes here.

File details

Details for the file asammdf-7.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ed83fe96008dc667cfe665a0b98b652e4b52ec278156f44fd96b0d1c81b703c4
MD5 135e111af15c248390e6f2474853984e
BLAKE2b-256 2aa7dffed57e7bed99435ff7a4ecf4fc8785536d9847d3fb4016b7d82283dd00

See more details on using hashes here.

File details

Details for the file asammdf-7.3.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e2088579a2b9896b1ab03fb07fa3994b938ec6c013f9aa25aee39719da32e281
MD5 d71d85db7dfb9d18aa181683acded559
BLAKE2b-256 7c0490f59bd981f0b07d14d4f6a7566e05facc8519674da160a932b29d76aeab

See more details on using hashes here.

File details

Details for the file asammdf-7.3.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: asammdf-7.3.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 802.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.3.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9b40e4e4a75022d50158c5576e479c795442e830350401eac5dd8d7eab5233f7
MD5 3db20b7ba7926970ab6ee769c42c6ea2
BLAKE2b-256 9d8ba84051529d68653df1e3b4bbe177b4f529a07db7df2ccebb9ff9ea80336e

See more details on using hashes here.

File details

Details for the file asammdf-7.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dd982770b61fd726198e131e14a4496bcb08e14f2cf44c5f18e0a5f9188ddb9c
MD5 fae9cd438901f23f19c060fd8ba0651a
BLAKE2b-256 a7c71f8783356b505a31f515f2b8eec512b4e35f09392a532e564aa86a74a3f0

See more details on using hashes here.

File details

Details for the file asammdf-7.3.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 70a8f0e530f88eeba2b1b9f82bb04ecddb05b80d4c3557311d82355554a245b0
MD5 534dcfc4b4da2c967e5369a582bef975
BLAKE2b-256 b9316017ac636cf812e35ea34e7e4c82274c925c0120e1ac260acba42da5c552

See more details on using hashes here.

File details

Details for the file asammdf-7.3.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: asammdf-7.3.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 802.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.3.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e9546650b7283e378c9a66f965ceb9163083f75af9a5561812ca966576c9925b
MD5 523586d4d2c1c9704d1abd005f6e76c4
BLAKE2b-256 612021f8fd976f020258bb6f4db5faa429f34f26d12f557f1031212d89b98bbc

See more details on using hashes here.

File details

Details for the file asammdf-7.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 448025695f1402305601f6762762cf469f17646c7783300566316fc5bac96776
MD5 1af347ab90e43716f51905877d232823
BLAKE2b-256 78dd5208f5995a0f44fb776ab58c7854e4dbf5687409a9538404e5ec93587f7e

See more details on using hashes here.

File details

Details for the file asammdf-7.3.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9b0d91767629f168133233c5a3096d4a716fbf85751bbc87a1e451d3cb8bd435
MD5 d84e86f2b1295c91efbc3afd8f4ac2ad
BLAKE2b-256 7f1b6f69f247f919125909a4117fecaa4e7bd5ae29714cb73ca6a9e1af4f7e20

See more details on using hashes here.

File details

Details for the file asammdf-7.3.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: asammdf-7.3.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 802.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.3.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e64369beab996955829174242c5aa4eb1dce7bf16e1f1ade5a2e3284bad292a1
MD5 e5d3c6217668e6e4077c1d39bd8a5a6c
BLAKE2b-256 6201ab1b0301b389279a767dd8b347a36e1e4b3dc1ef9efa319c599c18d95b0d

See more details on using hashes here.

File details

Details for the file asammdf-7.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4bbb9503f7382d4e582a1fe033d3dafb9c3c89b136a2cf6d52288e63e7881f68
MD5 2cd70427d3a564122b788fc0ab229649
BLAKE2b-256 8647bf6d38660afd64ffc5fa343bd59c825f2d8b3cfd198cb7b6f9ba526346b7

See more details on using hashes here.

File details

Details for the file asammdf-7.3.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4967aad51ace0541a6af6c425a02797c4f8a1db99e6931d7f7624951d03ab41d
MD5 44728a83fa16b314109e7a57b63bb9d6
BLAKE2b-256 3b063f63e729ead6b1deca77afc12abcbdbb722b925ba458cff2c9b019ab25a8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page