Skip to main content

ASAM MDF measurement data file parser

Project description

asammdf is a fast parser and editor for ASAM (Association for Standardization of Automation and Measuring Systems) MDF (Measurement Data Format) files.

asammdf supports MDF versions 2 (.dat), 3 (.mdf) and 4 (.mf4).

asammdf works on Python >= 3.8

Status

Continuous Integration Coveralls Codacy ReadTheDocs
continuous integration Coverage Status Codacy Badge Documentation Status
PyPI conda-forge
PyPI version conda-forge version

Project goals

The main goals for this library are:

  • to be faster than the other Python based mdf libraries
  • to have clean and easy to understand code base
  • to have minimal 3-rd party dependencies

Features

  • create new mdf files from scratch

  • append new channels

  • read unsorted MDF v3 and v4 files

  • read CAN and LIN bus logging files

  • extract CAN and LIN signals from anonymous bus logging measurements

  • filter a subset of channels from original mdf file

  • cut measurement to specified time interval

  • convert to different mdf version

  • export to HDF5, Matlab (v7.3), CSV and parquet

  • merge multiple files sharing the same internal structure

  • read and save mdf version 4.10 files containing zipped data blocks

  • space optimizations for saved files (no duplicated blocks)

  • split large data blocks (configurable size) for mdf version 4

  • full support (read, append, save) for the following map types (multidimensional array channels):

    • mdf version 3 channels with CDBLOCK

    • mdf version 4 structure channel composition

    • mdf version 4 channel arrays with CNTemplate storage and one of the array types:

      • 0 - array
      • 1 - scaling axis
      • 2 - look-up
  • add and extract attachments for mdf version 4

  • handle large files (for example merging two fileas, each with 14000 channels and 5GB size, on a RaspberryPi)

  • extract channel data, master channel and extra channel information as Signal objects for unified operations with v3 and v4 files

  • time domain operation using the Signal class

    • Pandas data frames are good if all the channels have the same time based
    • a measurement will usually have channels from different sources at different rates
    • the Signal class facilitates operations with such channels
  • graphical interface to visualize channels and perform operations with the files

Major features not implemented (yet)

  • for version 3

    • functionality related to sample reduction block: the samples reduction blocks are simply ignored
  • for version 4

    • experimental support for MDF v4.20 column oriented storage
    • functionality related to sample reduction block: the samples reduction blocks are simply ignored
    • handling of channel hierarchy: channel hierarchy is ignored
    • full handling of bus logging measurements: currently only CAN and LIN bus logging are implemented with the ability to get signals defined in the attached CAN/LIN database (.arxml or .dbc). Signals can also be extracted from an anonymous bus logging measurement by providing a CAN or LIN database (.dbc or .arxml)
    • handling of unfinished measurements (mdf 4): finalization is attempted when the file is loaded, however the not all the finalization steps are supported
    • full support for remaining mdf 4 channel arrays types
    • xml schema for MDBLOCK: most metadata stored in the comment blocks will not be available
    • full handling of event blocks: events are transferred to the new files (in case of calling methods that return new MDF objects) but no new events can be created
    • channels with default X axis: the default X axis is ignored and the channel group's master channel is used
    • attachment encryption/decryption using user provided encryption/decryption functions; this is not part of the MDF v4 spec and is only supported by this library

Usage

from asammdf import MDF

mdf = MDF('sample.mdf')
speed = mdf.get('WheelSpeed')
speed.plot()

important_signals = ['WheelSpeed', 'VehicleSpeed', 'VehicleAcceleration']
# get short measurement with a subset of channels from 10s to 12s
short = mdf.filter(important_signals).cut(start=10, stop=12)

# convert to version 4.10 and save to disk
short.convert('4.10').save('important signals.mf4')

# plot some channels from a huge file
efficient = MDF('huge.mf4')
for signal in efficient.select(['Sensor1', 'Voltage3']):
   signal.plot()

Check the examples folder for extended usage demo, or the documentation http://asammdf.readthedocs.io/en/master/examples.html

https://canlogger.csselectronics.com/canedge-getting-started/log-file-tools/asammdf-api/

Documentation

http://asammdf.readthedocs.io/en/master

And a nicely written tutorial on the CSS Electronics site

Contributing & Support

Please have a look over the contributing guidelines

If you enjoy this library please consider making a donation to the numpy project or to danielhrisca using liberapay <a href="https://liberapay.com/danielhrisca/donate"><img alt="Donate using Liberapay" src="https://liberapay.com/assets/widgets/donate.svg"></a>

Contributors

Thanks to all who contributed with commits to asammdf:

Installation

asammdf is available on

pip install asammdf
# for the GUI 
pip install asammdf[gui]
# or for anaconda
conda install -c conda-forge asammdf

In case a wheel is not present for you OS/Python versions and you lack the proper compiler setup to compile the c-extension code, then you can simply copy-paste the package code to your site-packages. In this way the python fallback code will be used instead of the compiled c-extension code.

Dependencies

asammdf uses the following libraries

  • numpy : the heart that makes all tick
  • numexpr : for algebraic and rational channel conversions
  • wheel : for installation in virtual environments
  • pandas : for DataFrame export
  • canmatrix : to handle CAN/LIN bus logging measurements
  • natsort
  • lxml : for canmatrix arxml support
  • lz4 : to speed up the disk IO performance
  • python-dateutil : measurement start time handling

optional dependencies needed for exports

  • h5py : for HDF5 export
  • hdf5storage : for Matlab v7.3 .mat export
  • fastparquet : for parquet export
  • scipy: for Matlab v4 and v5 .mat export

other optional dependencies

  • PySide6 : for GUI tool
  • pyqtgraph : for GUI tool and Signal plotting
  • matplotlib : as fallback for Signal plotting
  • cChardet : to detect non-standard Unicode encodings
  • chardet : to detect non-standard Unicode encodings
  • pyqtlet2 : for the GPS window
  • isal : for faster zlib compression/decompression
  • fsspec : access files stored in the cloud

Benchmarks

http://asammdf.readthedocs.io/en/master/benchmarks.html

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

asammdf-7.3.10.tar.gz (736.2 kB view details)

Uploaded Source

Built Distributions

asammdf-7.3.10-cp311-cp311-win_amd64.whl (821.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

asammdf-7.3.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (845.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

asammdf-7.3.10-cp311-cp311-macosx_10_9_x86_64.whl (814.7 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

asammdf-7.3.10-cp310-cp310-win_amd64.whl (821.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

asammdf-7.3.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (844.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

asammdf-7.3.10-cp310-cp310-macosx_10_9_x86_64.whl (814.7 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

asammdf-7.3.10-cp39-cp39-win_amd64.whl (821.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

asammdf-7.3.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (844.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

asammdf-7.3.10-cp39-cp39-macosx_10_9_x86_64.whl (814.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

asammdf-7.3.10-cp38-cp38-win_amd64.whl (821.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

asammdf-7.3.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (844.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

asammdf-7.3.10-cp38-cp38-macosx_10_9_x86_64.whl (814.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file asammdf-7.3.10.tar.gz.

File metadata

  • Download URL: asammdf-7.3.10.tar.gz
  • Upload date:
  • Size: 736.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.3.10.tar.gz
Algorithm Hash digest
SHA256 7bacc47b569d68e0d67b3968131985975090b5529b89d464de3a18c6ed339c8b
MD5 a06a60289e6e25435a7404ead7a04adc
BLAKE2b-256 189037053f12542310bb4937513721ce3d1ac96cadbd5066c3bf1c963a1b0624

See more details on using hashes here.

File details

Details for the file asammdf-7.3.10-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: asammdf-7.3.10-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 821.0 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.3.10-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 03ee2d978e336105da31a700a07671837c24e23c8151dac94b9e415e24d77bad
MD5 06b620eccecf9102e18ce4ee1116054e
BLAKE2b-256 081c8a1d0bdee82ae1390f47c0f5db638c2a0e378ebe49b2810fc32cfd6dfbd0

See more details on using hashes here.

File details

Details for the file asammdf-7.3.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e93ed3c172f7e82a347cb4402b0715305308de873ce83a4eb55c2036839db52c
MD5 a8b7e36300d7552859be0178c5ecd809
BLAKE2b-256 7d6e49b143672e5045e4a94020a6705d32e600f5164b2e81a448c213e2213a6a

See more details on using hashes here.

File details

Details for the file asammdf-7.3.10-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.10-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3f66c169f3ffcf4c7e89327b6b7096ece3e95c8f11236ce424f91c8276c8507b
MD5 5b44a1ec8b6c9bd683308ab3d144e0b0
BLAKE2b-256 6b3e9dbc65c9b1280548523c3a9e8794bdf5bdc6fd9331c2c7f6bcb1c8728726

See more details on using hashes here.

File details

Details for the file asammdf-7.3.10-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: asammdf-7.3.10-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 821.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.3.10-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c716af415c8bb625dcfb426e835d34cde9cb01743749e0e8ea4498656a810cd4
MD5 4e8f63c0db369067ff9429c809559553
BLAKE2b-256 8bc95e664cbeaad6704d07bfdf27bc553393de6d94c5d2714f6d463a2a1467c8

See more details on using hashes here.

File details

Details for the file asammdf-7.3.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 63de0cfdb3037153df593c83482796339b2b616ad54de2dbf58c1044cc803db5
MD5 9e1171e4a74e8e8a1cbce78c918c3b01
BLAKE2b-256 0baf289042f0e32d010be7a6a0ec87b01302e6edeffcc82e8822d88f63d81a84

See more details on using hashes here.

File details

Details for the file asammdf-7.3.10-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.10-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 03df1fb922f5ccfb78b3bd41ea069d98962fbf1a07c874e0c0f20ec613374db9
MD5 526635b0f80819b9e60e009724d66ed2
BLAKE2b-256 1301c44f6a09991a37098f5a594a51cd5a6d6fbf34590367d685b8573041a887

See more details on using hashes here.

File details

Details for the file asammdf-7.3.10-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: asammdf-7.3.10-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 821.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.3.10-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 52553e86f569841d36c3fab56421d2e917bd59cc2be4c2343b8797a596490dd8
MD5 c67e05ed2e9735c110eb0856d478e9b2
BLAKE2b-256 e66039fc2bddb20a9614e3a312699ebe5735192e0f00822c26b20e5db178ba70

See more details on using hashes here.

File details

Details for the file asammdf-7.3.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7b85bf0147733148e3db59f6b1cffe60afe82b097fee2e9dc858d33f554f3586
MD5 68dd430bdd7ae9d19bec7da39122ece6
BLAKE2b-256 9de0fd2debdf933505eeceb011e97c648c963a68e80d3575139240efd53e0927

See more details on using hashes here.

File details

Details for the file asammdf-7.3.10-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.10-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9d6b3aeff112913b162b558c00ea12c5e1a57a43226c4644b33a7ba2d8b5fee9
MD5 578b4b11f7dbca3093dbd48e99e43e12
BLAKE2b-256 993b507346fd6bb6c37092a40774a7f026b82c2e84da0582dc0136ed966941af

See more details on using hashes here.

File details

Details for the file asammdf-7.3.10-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: asammdf-7.3.10-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 821.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.3.10-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0954f90943ffb277d860a219386ee5da4c7a651ee42ef75d25d20d3b88f1f31c
MD5 18f2d668c0ed92ecb4f60372d97ccac9
BLAKE2b-256 8eb1c07857f1120dba30371d96831b1c27fdf61e05ebde1a3525f4a8cfe83c13

See more details on using hashes here.

File details

Details for the file asammdf-7.3.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cefae1f13803c917ab3923ff2ede298db516e8fc4aa3e18cb6838df50e799e6b
MD5 f7ffe6252b8b7b7258aea52c0ce017a1
BLAKE2b-256 25d5d8d7c1b9a048ad42f3cf5ff1859349d989f8f44cf918099588271545ad9f

See more details on using hashes here.

File details

Details for the file asammdf-7.3.10-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.10-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6745436790613d97581a64632ea46ce2c6a09fa77cc95f835c03213ca6c15301
MD5 fd033f450b775bd963787fe748b872eb
BLAKE2b-256 733eef42249d9611929a886f0b8840b0757d30f6d4e8c1f1377b7fb21e0d727e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page