Skip to main content

ASAM MDF measurement data file parser

Project description

asammdf is a fast parser and editor for ASAM (Association for Standardization of Automation and Measuring Systems) MDF (Measurement Data Format) files.

asammdf supports MDF versions 2 (.dat), 3 (.mdf) and 4 (.mf4).

asammdf works on Python >= 3.8

Status

Continuous Integration Coveralls Codacy ReadTheDocs
continuous integration Coverage Status Codacy Badge Documentation Status
PyPI conda-forge
PyPI version conda-forge version

Project goals

The main goals for this library are:

  • to be faster than the other Python based mdf libraries
  • to have clean and easy to understand code base
  • to have minimal 3-rd party dependencies

Features

  • create new mdf files from scratch

  • append new channels

  • read unsorted MDF v3 and v4 files

  • read CAN and LIN bus logging files

  • extract CAN and LIN signals from anonymous bus logging measurements

  • filter a subset of channels from original mdf file

  • cut measurement to specified time interval

  • convert to different mdf version

  • export to HDF5, Matlab (v7.3), CSV and parquet

  • merge multiple files sharing the same internal structure

  • read and save mdf version 4.10 files containing zipped data blocks

  • space optimizations for saved files (no duplicated blocks)

  • split large data blocks (configurable size) for mdf version 4

  • full support (read, append, save) for the following map types (multidimensional array channels):

    • mdf version 3 channels with CDBLOCK

    • mdf version 4 structure channel composition

    • mdf version 4 channel arrays with CNTemplate storage and one of the array types:

      • 0 - array
      • 1 - scaling axis
      • 2 - look-up
  • add and extract attachments for mdf version 4

  • handle large files (for example merging two fileas, each with 14000 channels and 5GB size, on a RaspberryPi)

  • extract channel data, master channel and extra channel information as Signal objects for unified operations with v3 and v4 files

  • time domain operation using the Signal class

    • Pandas data frames are good if all the channels have the same time based
    • a measurement will usually have channels from different sources at different rates
    • the Signal class facilitates operations with such channels
  • graphical interface to visualize channels and perform operations with the files

Major features not implemented (yet)

  • for version 3

    • functionality related to sample reduction block: the samples reduction blocks are simply ignored
  • for version 4

    • experimental support for MDF v4.20 column oriented storage
    • functionality related to sample reduction block: the samples reduction blocks are simply ignored
    • handling of channel hierarchy: channel hierarchy is ignored
    • full handling of bus logging measurements: currently only CAN and LIN bus logging are implemented with the ability to get signals defined in the attached CAN/LIN database (.arxml or .dbc). Signals can also be extracted from an anonymous bus logging measurement by providing a CAN or LIN database (.dbc or .arxml)
    • handling of unfinished measurements (mdf 4): finalization is attempted when the file is loaded, however the not all the finalization steps are supported
    • full support for remaining mdf 4 channel arrays types
    • xml schema for MDBLOCK: most metadata stored in the comment blocks will not be available
    • full handling of event blocks: events are transferred to the new files (in case of calling methods that return new MDF objects) but no new events can be created
    • channels with default X axis: the default X axis is ignored and the channel group's master channel is used
    • attachment encryption/decryption using user provided encryption/decryption functions; this is not part of the MDF v4 spec and is only supported by this library

Usage

from asammdf import MDF

mdf = MDF('sample.mdf')
speed = mdf.get('WheelSpeed')
speed.plot()

important_signals = ['WheelSpeed', 'VehicleSpeed', 'VehicleAcceleration']
# get short measurement with a subset of channels from 10s to 12s
short = mdf.filter(important_signals).cut(start=10, stop=12)

# convert to version 4.10 and save to disk
short.convert('4.10').save('important signals.mf4')

# plot some channels from a huge file
efficient = MDF('huge.mf4')
for signal in efficient.select(['Sensor1', 'Voltage3']):
   signal.plot()

Check the examples folder for extended usage demo, or the documentation http://asammdf.readthedocs.io/en/master/examples.html

https://canlogger.csselectronics.com/canedge-getting-started/log-file-tools/asammdf-api/

Documentation

http://asammdf.readthedocs.io/en/master

And a nicely written tutorial on the CSS Electronics site

Contributing & Support

Please have a look over the contributing guidelines

If you enjoy this library please consider making a donation to the numpy project or to danielhrisca using liberapay <a href="https://liberapay.com/danielhrisca/donate"><img alt="Donate using Liberapay" src="https://liberapay.com/assets/widgets/donate.svg"></a>

Contributors

Thanks to all who contributed with commits to asammdf:

Installation

asammdf is available on

pip install asammdf
# for the GUI 
pip install asammdf[gui]
# or for anaconda
conda install -c conda-forge asammdf

In case a wheel is not present for you OS/Python versions and you lack the proper compiler setup to compile the c-extension code, then you can simply copy-paste the package code to your site-packages. In this way the python fallback code will be used instead of the compiled c-extension code.

Dependencies

asammdf uses the following libraries

  • numpy : the heart that makes all tick
  • numexpr : for algebraic and rational channel conversions
  • wheel : for installation in virtual environments
  • pandas : for DataFrame export
  • canmatrix : to handle CAN/LIN bus logging measurements
  • natsort
  • lxml : for canmatrix arxml support
  • lz4 : to speed up the disk IO performance
  • python-dateutil : measurement start time handling

optional dependencies needed for exports

  • h5py : for HDF5 export
  • hdf5storage : for Matlab v7.3 .mat export
  • fastparquet : for parquet export
  • scipy: for Matlab v4 and v5 .mat export

other optional dependencies

  • PySide6 : for GUI tool
  • pyqtgraph : for GUI tool and Signal plotting
  • matplotlib : as fallback for Signal plotting
  • cChardet : to detect non-standard Unicode encodings
  • chardet : to detect non-standard Unicode encodings
  • pyqtlet2 : for the GPS window
  • isal : for faster zlib compression/decompression
  • fsspec : access files stored in the cloud

Benchmarks

http://asammdf.readthedocs.io/en/master/benchmarks.html

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

asammdf-7.3.16.tar.gz (742.1 kB view details)

Uploaded Source

Built Distributions

asammdf-7.3.16-cp311-cp311-win_amd64.whl (824.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

asammdf-7.3.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (848.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

asammdf-7.3.16-cp311-cp311-macosx_10_9_x86_64.whl (817.6 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

asammdf-7.3.16-cp310-cp310-win_amd64.whl (824.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

asammdf-7.3.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (847.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

asammdf-7.3.16-cp310-cp310-macosx_10_9_x86_64.whl (817.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

asammdf-7.3.16-cp39-cp39-win_amd64.whl (824.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

asammdf-7.3.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (847.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

asammdf-7.3.16-cp39-cp39-macosx_10_9_x86_64.whl (817.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

asammdf-7.3.16-cp38-cp38-win_amd64.whl (824.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

asammdf-7.3.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (847.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

asammdf-7.3.16-cp38-cp38-macosx_10_9_x86_64.whl (817.6 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

asammdf-7.3.16-1-cp311-cp311-win_amd64.whl (825.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

asammdf-7.3.16-1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (849.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

asammdf-7.3.16-1-cp311-cp311-macosx_10_9_x86_64.whl (818.4 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

asammdf-7.3.16-1-cp310-cp310-win_amd64.whl (825.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

asammdf-7.3.16-1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (848.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

asammdf-7.3.16-1-cp310-cp310-macosx_10_9_x86_64.whl (818.4 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

asammdf-7.3.16-1-cp39-cp39-win_amd64.whl (825.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

asammdf-7.3.16-1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (847.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

asammdf-7.3.16-1-cp39-cp39-macosx_10_9_x86_64.whl (818.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

asammdf-7.3.16-1-cp38-cp38-win_amd64.whl (825.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

asammdf-7.3.16-1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (848.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

asammdf-7.3.16-1-cp38-cp38-macosx_10_9_x86_64.whl (818.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file asammdf-7.3.16.tar.gz.

File metadata

  • Download URL: asammdf-7.3.16.tar.gz
  • Upload date:
  • Size: 742.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.3.16.tar.gz
Algorithm Hash digest
SHA256 8ce5e222ce2ed04f7ba9170f15964deedd836dfc391e2c3787292a97f50b9478
MD5 8fb086e0386cc0c63ecc527abc94a2af
BLAKE2b-256 598eb63b3a1db14234524f64eee212711517963dfd38e265564eaa3f15b03983

See more details on using hashes here.

File details

Details for the file asammdf-7.3.16-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: asammdf-7.3.16-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 824.4 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.3.16-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b180fa38cd47a574936810358c4df8c58fc3ae2916d563d50cab6eb14b227dcc
MD5 250ed53934af548677e24104407dcc17
BLAKE2b-256 63aec0dd3b449abc818a0cb776431e4bd0f47b0ace400b603305bb9375ef182c

See more details on using hashes here.

File details

Details for the file asammdf-7.3.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 42ed10b42ada4c0ba88c52784bcf53de89b8780ae6891547df800774ab814274
MD5 c9b45efb9f2a3312a5fc5c163a58623e
BLAKE2b-256 d478728cbf68a32afd9e48726aa564effdf933133ae1cbcc130182b78c192e4d

See more details on using hashes here.

File details

Details for the file asammdf-7.3.16-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.16-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e85d87348be6eea9addd62c9b729fab3fffbf1ea387058ce795bc58b2af8465c
MD5 49ba4850cea9e8b06169b2e7d832291e
BLAKE2b-256 3fde4b74a85643e57eb45833c2597d1bfcbdc0bcc85eac7bd4ec425f07db33c8

See more details on using hashes here.

File details

Details for the file asammdf-7.3.16-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: asammdf-7.3.16-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 824.4 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.3.16-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5d5b79ae5ac3478d3468d6ff945b0af3bdc78406ecf978c96245468f309a1ef4
MD5 7ecdcead0e6c52d42d3158fe3bf54f7f
BLAKE2b-256 132a6f7064a51c3e8851c7b1b75062011945919a5246bfd36ff886f7c42a6180

See more details on using hashes here.

File details

Details for the file asammdf-7.3.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9b2c98065e5ca2d127c5af4e9fe832ed4722e084867dbaad9dbc5236227fefad
MD5 a85eb9536246b6f66f603ca3ba697a81
BLAKE2b-256 2c030115b2ad7a0875fa2224e9839d910fd7854ec5164f0017107e60f9e3d4d2

See more details on using hashes here.

File details

Details for the file asammdf-7.3.16-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.16-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fcad635e120413338828616b5edb122d85339d3f8dd24e3fd32242ca66880efb
MD5 748863bef835f12d74f1705b9f31f40b
BLAKE2b-256 46dd8f8a212088684ebc100ac44278507e7f9cbae2ef5832088bc6a8b66de2ca

See more details on using hashes here.

File details

Details for the file asammdf-7.3.16-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: asammdf-7.3.16-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 824.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.3.16-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 bab4253f7d42420ddba66b3d285b28579a7e7e6ddac170d9604daceb03d2e1ba
MD5 cc3f39c5ce7615a0c26ed06340144559
BLAKE2b-256 106b6c1d33e48c96255d6dbf783bba3527b9b69c4ffb8b93cebfcd47d61e02d1

See more details on using hashes here.

File details

Details for the file asammdf-7.3.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8dd5e3816986fe8e22bfaf2500521b7c0574a6bc3472d5088a4b57b371924e03
MD5 dd041ababa142b7ea743990f87f38951
BLAKE2b-256 52d7cc6fe8115e3620267bfaf7cc76dc25f33284624c35a038083b32042d775d

See more details on using hashes here.

File details

Details for the file asammdf-7.3.16-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.16-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dc8f25600420920727186096d243d02c40cee782c773d948f629065494c2f540
MD5 c6b43bbb8c9668817394b09b62d778ad
BLAKE2b-256 9a02a1edbea2eaf2fdd717a663970db954163216333573f26af29aa5cea345e2

See more details on using hashes here.

File details

Details for the file asammdf-7.3.16-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: asammdf-7.3.16-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 824.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.3.16-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a2f230a590ea74fd71db12b28dee5557557f37a9377d27727b1abef6c1884861
MD5 0de94e92d188681cde2a61d9adeccd9b
BLAKE2b-256 1792f7e2b55d84f53758d5b3172204c8ae01a20fb47d9b54f259ec596622bd48

See more details on using hashes here.

File details

Details for the file asammdf-7.3.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5be0afc4db73e1969b04fe82b390486ea0b419ed8b1749c36b67dbd7fd11b989
MD5 e6d9c68f4ebbb95bdea9c58fe07345e1
BLAKE2b-256 0e51ab65b0c00932bd3f256576c79e8c747a047810a6035fcd74148ab121303f

See more details on using hashes here.

File details

Details for the file asammdf-7.3.16-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.16-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dea1677d420712d9281738595d883a3b5898ca81efa7a58ba7011c09e6027647
MD5 f96a9179c6fbc29b575261a383874761
BLAKE2b-256 bcc31cae382a32794d7c41e4fb5aa104e6d3200f7b361e94d9ebc07cdef5bdb6

See more details on using hashes here.

File details

Details for the file asammdf-7.3.16-1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.16-1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ccefdfbb70633f62d9fe5805b08d76dfda1eda00edd75dbfa4f6ec53a434d213
MD5 d4fc48452b6bc1cbfb9e0a065b363561
BLAKE2b-256 f05e2a014fdd045db280d4fca1073b4d0fbca2ae46dde12677ec37a6ba7d4928

See more details on using hashes here.

File details

Details for the file asammdf-7.3.16-1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.16-1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8a55b6e67dcce5e8afd79047c670021b7cf4454104dff6e6f949201c0186e257
MD5 76aa80d8739e293c58f65ce6305fe9db
BLAKE2b-256 c4f71c95b844f8a74fa8d1cbdde42e2b02e8ac438422f37bdb30273e553214c5

See more details on using hashes here.

File details

Details for the file asammdf-7.3.16-1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.16-1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 22540f7060547121b5c51e4d76c90864249082e0cd82b1f595aa8b4fe6a89a42
MD5 98c0146e0b495bf5c748e71b5e593734
BLAKE2b-256 2fd9a144f62845371aa5584db432714b2dea07036ef1bb4c79f23088c585c421

See more details on using hashes here.

File details

Details for the file asammdf-7.3.16-1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.16-1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2fa197f6708c237445f930022c97f0e7b4ab80ee2b4aaf7fbef6db6bda2fc4b0
MD5 cbc0631341466f2c62258b487876de4f
BLAKE2b-256 a9bd6af6f59990481e728a1aaece9c391c582738ef28c981668e086795caaefb

See more details on using hashes here.

File details

Details for the file asammdf-7.3.16-1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.16-1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c8cb2644271bd62b9dda61a7aee8bbc3ffd0ea23d0bd706f287c5b0324920709
MD5 4c0260dec072e15a192214da951233b6
BLAKE2b-256 9b60097329f312281a53e768da73880bcdd934af34b5b3a0ba6fa122c0d2df2b

See more details on using hashes here.

File details

Details for the file asammdf-7.3.16-1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.16-1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e7dba8afa7be87425d76114f113dcefafb426700669ea25767025e4d4dc200a1
MD5 b7308ad382dbd66166c410001fa729b9
BLAKE2b-256 1a4e4b48283ebd6474fa7ae3c4ca4cc0b67ac5067d741b9ef03a967e70bf9888

See more details on using hashes here.

File details

Details for the file asammdf-7.3.16-1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: asammdf-7.3.16-1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 825.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.3.16-1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e8502d376ed5fae5d4370d9967d776f03a22b60fb362a6f65cb91ee7237799d1
MD5 a1f1f8c5216707f3bb139b1870ccd673
BLAKE2b-256 31c932eb8baf169749b2110d711aebd9107945bf6888b0d5db9a5ff9cd5cb647

See more details on using hashes here.

File details

Details for the file asammdf-7.3.16-1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.16-1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7213030f8f6b89c53ce410ac47e20aaf97b11e2f555c742d6eda7b729431bfce
MD5 f11bc2b8b4ddc8dc7f24c420921d1c14
BLAKE2b-256 fdbb05827ff10a0591616f60134fff320f4f08f78d37d2b409217199451f9ca1

See more details on using hashes here.

File details

Details for the file asammdf-7.3.16-1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.16-1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4846450b73557761d9a69282d5950d5fba345f30594acb6663aa0c2dbf3d1f01
MD5 ab0d5caec61bcd55d51a92df2a66ec52
BLAKE2b-256 e105a5727c159372de3cd027d212328020c16ec2d86692651934ebab2c256757

See more details on using hashes here.

File details

Details for the file asammdf-7.3.16-1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: asammdf-7.3.16-1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 825.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.3.16-1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2c800d79e9d790445491281a47b496b72227fb85990e94922f69749f7faa7477
MD5 6ed105f076c54f87518bb4a258cdffbf
BLAKE2b-256 72ab21a1fdde95996b8b29eef37f286a8158cc83a2ae7f1b57089fb7087f3fd5

See more details on using hashes here.

File details

Details for the file asammdf-7.3.16-1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.16-1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a3e5e8abd1435116f63a3dd408b0f9e85d29dbbc9711620b0a1692cbb6ad87e0
MD5 c90d2ea4bc031ef8a09f92a6fbb4e881
BLAKE2b-256 45a37ecd121c1c1180742febe55816ddfa72085250a7a62c9f6e2f86ada1abd4

See more details on using hashes here.

File details

Details for the file asammdf-7.3.16-1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.16-1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4892951e3a22ff8f7fb55f157977199b0fe2f076f825e6fffb674fa4b6c72b44
MD5 95a0085fc6fe6f0afd1bae6bf2de2e9e
BLAKE2b-256 9e43dd45ab0af1f02ac9f6ee1ff3cd08a976a5b459a6ac95dc89a12291585162

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page