Skip to main content

ASAM MDF measurement data file parser

Project description

asammdf is a fast parser and editor for ASAM (Association for Standardization of Automation and Measuring Systems) MDF (Measurement Data Format) files.

asammdf supports MDF versions 2 (.dat), 3 (.mdf) and 4 (.mf4).

asammdf works on Python >= 3.8

Status

Continuous Integration Coveralls Codacy ReadTheDocs
continuous integration Coverage Status Codacy Badge Documentation Status
PyPI conda-forge
PyPI version conda-forge version

Project goals

The main goals for this library are:

  • to be faster than the other Python based mdf libraries
  • to have clean and easy to understand code base
  • to have minimal 3-rd party dependencies

Features

  • create new mdf files from scratch

  • append new channels

  • read unsorted MDF v3 and v4 files

  • read CAN and LIN bus logging files

  • extract CAN and LIN signals from anonymous bus logging measurements

  • filter a subset of channels from original mdf file

  • cut measurement to specified time interval

  • convert to different mdf version

  • export to HDF5, Matlab (v7.3), CSV and parquet

  • merge multiple files sharing the same internal structure

  • read and save mdf version 4.10 files containing zipped data blocks

  • space optimizations for saved files (no duplicated blocks)

  • split large data blocks (configurable size) for mdf version 4

  • full support (read, append, save) for the following map types (multidimensional array channels):

    • mdf version 3 channels with CDBLOCK

    • mdf version 4 structure channel composition

    • mdf version 4 channel arrays with CNTemplate storage and one of the array types:

      • 0 - array
      • 1 - scaling axis
      • 2 - look-up
  • add and extract attachments for mdf version 4

  • handle large files (for example merging two fileas, each with 14000 channels and 5GB size, on a RaspberryPi)

  • extract channel data, master channel and extra channel information as Signal objects for unified operations with v3 and v4 files

  • time domain operation using the Signal class

    • Pandas data frames are good if all the channels have the same time based
    • a measurement will usually have channels from different sources at different rates
    • the Signal class facilitates operations with such channels
  • graphical interface to visualize channels and perform operations with the files

Major features not implemented (yet)

  • for version 3

    • functionality related to sample reduction block: the samples reduction blocks are simply ignored
  • for version 4

    • experimental support for MDF v4.20 column oriented storage
    • functionality related to sample reduction block: the samples reduction blocks are simply ignored
    • handling of channel hierarchy: channel hierarchy is ignored
    • full handling of bus logging measurements: currently only CAN and LIN bus logging are implemented with the ability to get signals defined in the attached CAN/LIN database (.arxml or .dbc). Signals can also be extracted from an anonymous bus logging measurement by providing a CAN or LIN database (.dbc or .arxml)
    • handling of unfinished measurements (mdf 4): finalization is attempted when the file is loaded, however the not all the finalization steps are supported
    • full support for remaining mdf 4 channel arrays types
    • xml schema for MDBLOCK: most metadata stored in the comment blocks will not be available
    • full handling of event blocks: events are transferred to the new files (in case of calling methods that return new MDF objects) but no new events can be created
    • channels with default X axis: the default X axis is ignored and the channel group's master channel is used
    • attachment encryption/decryption using user provided encryption/decryption functions; this is not part of the MDF v4 spec and is only supported by this library

Usage

from asammdf import MDF

mdf = MDF('sample.mdf')
speed = mdf.get('WheelSpeed')
speed.plot()

important_signals = ['WheelSpeed', 'VehicleSpeed', 'VehicleAcceleration']
# get short measurement with a subset of channels from 10s to 12s
short = mdf.filter(important_signals).cut(start=10, stop=12)

# convert to version 4.10 and save to disk
short.convert('4.10').save('important signals.mf4')

# plot some channels from a huge file
efficient = MDF('huge.mf4')
for signal in efficient.select(['Sensor1', 'Voltage3']):
   signal.plot()

Check the examples folder for extended usage demo, or the documentation http://asammdf.readthedocs.io/en/master/examples.html

https://canlogger.csselectronics.com/canedge-getting-started/log-file-tools/asammdf-api/

Documentation

http://asammdf.readthedocs.io/en/master

And a nicely written tutorial on the CSS Electronics site

Contributing & Support

Please have a look over the contributing guidelines

If you enjoy this library please consider making a donation to the numpy project or to danielhrisca using liberapay <a href="https://liberapay.com/danielhrisca/donate"><img alt="Donate using Liberapay" src="https://liberapay.com/assets/widgets/donate.svg"></a>

Contributors

Thanks to all who contributed with commits to asammdf:

Installation

asammdf is available on

pip install asammdf
# for the GUI 
pip install asammdf[gui]
# or for anaconda
conda install -c conda-forge asammdf

In case a wheel is not present for you OS/Python versions and you lack the proper compiler setup to compile the c-extension code, then you can simply copy-paste the package code to your site-packages. In this way the python fallback code will be used instead of the compiled c-extension code.

Dependencies

asammdf uses the following libraries

  • numpy : the heart that makes all tick
  • numexpr : for algebraic and rational channel conversions
  • wheel : for installation in virtual environments
  • pandas : for DataFrame export
  • canmatrix : to handle CAN/LIN bus logging measurements
  • natsort
  • lxml : for canmatrix arxml support
  • lz4 : to speed up the disk IO performance
  • python-dateutil : measurement start time handling

optional dependencies needed for exports

  • h5py : for HDF5 export
  • hdf5storage : for Matlab v7.3 .mat export
  • fastparquet : for parquet export
  • scipy: for Matlab v4 and v5 .mat export

other optional dependencies

  • PySide6 : for GUI tool
  • pyqtgraph : for GUI tool and Signal plotting
  • matplotlib : as fallback for Signal plotting
  • cChardet : to detect non-standard Unicode encodings
  • chardet : to detect non-standard Unicode encodings
  • pyqtlet2 : for the GPS window
  • isal : for faster zlib compression/decompression
  • fsspec : access files stored in the cloud

Benchmarks

http://asammdf.readthedocs.io/en/master/benchmarks.html

Project details


Release history Release notifications | RSS feed

This version

7.3.2

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

asammdf-7.3.2.tar.gz (718.1 kB view details)

Uploaded Source

Built Distributions

asammdf-7.3.2-cp311-cp311-win_amd64.whl (802.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

asammdf-7.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (826.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

asammdf-7.3.2-cp311-cp311-macosx_10_9_x86_64.whl (796.2 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

asammdf-7.3.2-cp310-cp310-win_amd64.whl (802.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

asammdf-7.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (825.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

asammdf-7.3.2-cp310-cp310-macosx_10_9_x86_64.whl (796.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

asammdf-7.3.2-cp39-cp39-win_amd64.whl (802.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

asammdf-7.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (825.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

asammdf-7.3.2-cp39-cp39-macosx_10_9_x86_64.whl (796.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

asammdf-7.3.2-cp38-cp38-win_amd64.whl (802.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

asammdf-7.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (825.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

asammdf-7.3.2-cp38-cp38-macosx_10_9_x86_64.whl (796.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file asammdf-7.3.2.tar.gz.

File metadata

  • Download URL: asammdf-7.3.2.tar.gz
  • Upload date:
  • Size: 718.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.3.2.tar.gz
Algorithm Hash digest
SHA256 a0df7cb030667df941c73b605c51d790d93e13686cd4116b2fe1a58a94c52797
MD5 d44f0a7dbe798fe93b2b09c5bed5b9b9
BLAKE2b-256 eccee7102129d002339b910a5e907f298ea4584ab1e513dbb053a8bffe469d1c

See more details on using hashes here.

File details

Details for the file asammdf-7.3.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: asammdf-7.3.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 802.8 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.3.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 73aa55abdec5aeaeac309546c34b0763065b73a6bd9cab903ec6659338a85ad2
MD5 73c4fa6cd1286f90da4fa7885f803ad8
BLAKE2b-256 792cb1f7bac027fa86974553f55fec79b02e17f06d289a9e1fc88b223c11687e

See more details on using hashes here.

File details

Details for the file asammdf-7.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5cf46e0ef729c55b09e1dcbc2f5f84564d92ad4752178036d5dcb573bd0c8f6b
MD5 e9432b06f688e1f8043b817f9de450db
BLAKE2b-256 d67055949d48ed0c64ac8d7382ad85543ca6da986ec3632059234ddd4b777c50

See more details on using hashes here.

File details

Details for the file asammdf-7.3.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5f892fe31b582b85813e0d5489821b31635be5774a84df2f5b6fb6386357747f
MD5 a03628e301deda62571eff83ef64b950
BLAKE2b-256 d4525223bfb9abcf9e60f8307febe42df7e3f1451b3732d59e02b357af436db8

See more details on using hashes here.

File details

Details for the file asammdf-7.3.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: asammdf-7.3.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 802.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.3.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f8c54cdb0b74012c5bbe4c8474ca206be8b9be54641337836135c32823b04e50
MD5 fe02990201199e4d65f6f43caeafb897
BLAKE2b-256 20e40d803cb7fffc5e3a032bdde633d6d849d807fe27111ace0307ca6f8ceb5b

See more details on using hashes here.

File details

Details for the file asammdf-7.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bec6abc288217182918309272445ae50fed02f78517e84ec829241aaf76304a4
MD5 d697c680eb0db25ab4c93e605887d219
BLAKE2b-256 85e43f38274b740c1d90842024396b9f241bbe6c23e91b70af01495069b8c6c0

See more details on using hashes here.

File details

Details for the file asammdf-7.3.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c4ee8746726121b2892002bc80e58b5b39c0b9c1d4b656c1a15fa24adc46976a
MD5 35505503429489b2a894a1521373e3ee
BLAKE2b-256 8a1249a313e7c7a5304c454b4c7329846865bb838181f7b72387be1356a9af0c

See more details on using hashes here.

File details

Details for the file asammdf-7.3.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: asammdf-7.3.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 802.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.3.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e8331d392ee0c7004398cf881776bc48af1bfbe9a683d8fdad2fb2d90d7da5d6
MD5 5a1ad88123a88fe33f1b9ce3d8eb6728
BLAKE2b-256 2d843f40a1ddf81722f490bdff7367d57f134adecc1efa425472dea04e619822

See more details on using hashes here.

File details

Details for the file asammdf-7.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3a8b7cc17e2ac1c1742b2bcc26e0bd9a31556d21d36ba9bf2fede14b11427920
MD5 358e60bbf852ceaf6faaa499a6d81354
BLAKE2b-256 8529e83e026cad7fd7bc4008f5312774a984f5ea918d00dc2f69662242952d20

See more details on using hashes here.

File details

Details for the file asammdf-7.3.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 67c742e4afb30768507af0655fc84fc488332704f25fc74902e82928ba242461
MD5 e487dae4f93ea56488ecab5be447fb61
BLAKE2b-256 be43a293cad75bbd8c32c2d8f234bfb99c2497642671fa953b8193434f5b3860

See more details on using hashes here.

File details

Details for the file asammdf-7.3.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: asammdf-7.3.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 802.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for asammdf-7.3.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 64314ea357f05567bc7531c11bf0af19c683c0ab1ace699cd5935fcbbd386966
MD5 aab78e0e7a8d14094cc0726ce4c760ba
BLAKE2b-256 58ef19034d2d9e4e8b62b33d3e6758e3f6a333750f4142254e7f6e12faa828d9

See more details on using hashes here.

File details

Details for the file asammdf-7.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 88a845044869fe1b561ddd6eeebb1eed2504c65f4a5d9fb7cb838e9c3598dd69
MD5 5eadbd80dc43d81bc75a5147dd247b6a
BLAKE2b-256 af1585a51efa982448de90e4b22389806fb496f2e69d2e16e1aee79c1dbf13f8

See more details on using hashes here.

File details

Details for the file asammdf-7.3.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for asammdf-7.3.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 848ce34436bb1d508b39a270238503f6618e937b710239fe878b127ac2145298
MD5 d5a6dbbd176e5aad70ed9134ba739ceb
BLAKE2b-256 235365baa03c966e7ad71581231d99b922a1393b46c56895137f6e0284f05926

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page