Skip to main content

ASCA: ANOVA-simultaneous component analysis

Project description

ASCA: ANOVA-Simultaneous Component Analysis in Python

Table of Contents

About The Project

ASCA is a multivariate approach to the standard ANOVA, using simultaneous component analysis to interprete the underlying factors and interaction from a design of experiment dataset. This project implements ASCA in python to support open source development and a wider application of ASCA.

Getting Started

Install this library either from the official pypi or from this Github repository:

pip install ASCA

Install most updated version from Github

In a environment terminal or CMD:

pip install git+https://github.com/tsyet12/ASCA

Simple Example

    X = [[1.0000,0.6000], 
    [3.0000,0.4000],
    [2.0000,0.7000],
    [1.0000,0.8000],
    [2.0000,0.0100],
    [2.0000,0.8000],
    [4.0000,1.0000],
    [6.0000,2.0000],
    [5.0000,0.9000],
    [5.0000,1.0000],
    [6.0000,2.0000],
    [5.0000,0.7000]]
    X=np.asarray(X)

    F = [[1,     1],
     [1,     1],
     [1,     2],
     [1,     2],
     [1,     3],
     [1,     3],
     [2,     1],
     [2,     1],
     [2,     2],
     [2,     2],
     [2,     3],
     [2,     3]]
    F=np.asarray(F)
    interactions = [[0, 1]]

    ASCA=ASCA()
    ASCA.fit(X,F,interactions)
    ASCA.plot_factors()
    ASCA.plot_interactions()

Figure_1 Figure_2 Figure_3

Contributing

Contributions are what make the open source community such an amazing place to be learn, inspire, and create. Any contributions you make are greatly appreciated.

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b testbranch/prep)
  3. Commit your Changes (git commit -m 'Improve testbranch/prep')
  4. Push to the Branch (git push origin testbranch/prep)
  5. Open a Pull Request

License

Distributed under the Open Sourced BSD-2-Clause License. See LICENSE for more information.

Contact

Main Developer:

Sin Yong Teng sinyong.teng@ru.nl or tsyet12@gmail.com Radboud University Nijmegen

References

Smilde, Age K., et al. "ANOVA-simultaneous component analysis (ASCA): a new tool for analyzing designed metabolomics data." Bioinformatics 21.13 (2005): 3043-3048.

Jansen, Jeroen J., et al. "ASCA: analysis of multivariate data obtained from an experimental design." Journal of Chemometrics: A Journal of the Chemometrics Society 19.9 (2005): 469-481.

Acknowledgements

The research contribution from S.Y. Teng is supported by the European Union's Horizon Europe Research and Innovation Program, under Marie Skłodowska-Curie Actions grant agreement no. 101064585 (MoCEGS).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

ASCA-1.4-py3-none-any.whl (7.6 kB view details)

Uploaded Python 3

File details

Details for the file ASCA-1.4-py3-none-any.whl.

File metadata

  • Download URL: ASCA-1.4-py3-none-any.whl
  • Upload date:
  • Size: 7.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.7

File hashes

Hashes for ASCA-1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 89f303ee8d8011eb93b061219d925a00cd3a33add198e7eaf74d744e887a89f8
MD5 3b85bfc7da2b09e1e67fefe2ccb23970
BLAKE2b-256 1e22c03c2b476768f787a5fec1611d6b838f10d79359dde94eaf2497b2e7dca2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page