Asian language bart models (En, Ja, Ko, Zh, ECJK)
Project description
Asian Bart
asian-bart
is package of Bart model for Asian languages.asian-bart
supports English, Chinese, Korean, japanese, Total (=ECJK)- We made
asian-bart
using mBart by embedding layer pruning.
Installation
pip install asian-bart
Model specification
- ECJK model
- vocab size: 57k
- model size: 413M
- languages: En, Zh, Ja, Ko
- architecture: Transformer 12 Encoder + 12 Decoder
- name:
hyunwoongko/asian-bart-ecjk
- English model
- vocab size: 32k
- model size: 387M
- languages: English (
en_XX
) - architecture: Transformer 12 Encoder + 12 Decoder
- name:
hyunwoongko/asian-bart-en
- Chinese model
- vocab size: 20k
- model size: 375M
- languages: Chinese (
zh_CN
) - architecture: Transformer 12 Encoder + 12 Decoder
- name:
hyunwoongko/asian-bart-zh
- Japanese model
- vocab size: 13k
- model size: 368M
- languages: Japanese (
ja_XX
) - architecture: Transformer 12 Encoder + 12 Decoder
- name:
hyunwoongko/asian-bart-ja
- Korean model
- vocab size: 8k
- model size: 363M
- languages: Korean (
ko_KR
) - architecture: Transformer 12 Encoder + 12 Decoder
- name:
hyunwoongko/asian-bart-ko
Usage
- The
asian-bart
is made using mbart, so you have to follow mbart's input rules:- source:
text
+</s>
+lang_code
- target:
lang_code
+text
+</s>
- source:
- For more details, please check the content of the mbart paper.
Usage of tokenizer
- tokenization of
(single language, single text)
>>> from asian_bart import AsianBartTokenizer
>>> tokenizer = AsianBartTokenizer.from_pretrained("hyunwoongko/asian-bart-ecjk")
>>> tokenizer.prepare_seq2seq_batch(
... src_texts="hello.",
... src_langs="en_XX",
... )
{
'input_ids': tensor([[37199, 35816, 2, 57521]]),
'attention_mask': tensor([[1, 1, 1, 1]])
}
- batch tokenization of
(single language, mutiple texts)
>>> from asian_bart import AsianBartTokenizer
>>> tokenizer = AsianBartTokenizer.from_pretrained("hyunwoongko/asian-bart-ecjk")
>>> tokenizer.prepare_seq2seq_batch(
... src_texts=["hello.", "how are you?", "good."],
... src_langs="en_XX",
... )
{
'input_ids': tensor([[37199, 35816, 2, 57521, 1, 1],
[38248, 46819, 39446, 36209, 2, 57521],
[40010, 39539, 2, 57521, 1, 1]]),
'attention_mask': tensor([[1, 1, 1, 1, 0, 0],
[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 0, 0]])
}
- batch tokenization of
(multiple languages, multiple texts)
>>> from asian_bart import AsianBartTokenizer
>>> tokenizer = AsianBartTokenizer.from_pretrained("hyunwoongko/asian-bart-ecjk")
>>> tokenizer.prepare_seq2seq_batch(
... src_texts=["hello.", "반가워", "你好", "こんにちは"],
... src_langs=["en_XX", "ko_KR", "zh_CN", "ja_XX"],
... )
{
'input_ids': tensor([[37199, 35816, 39539, 2, 57521, 1, 1, 1],
[22880, 49591, 3901, 2, 57523, 1, 1, 1],
[50356, 7929, 2, 57524, 1, 1, 1, 1],
[42990, 19092, 51547, 36821, 33899, 37382, 2, 57522]]),
'attention_mask': tensor([[1, 1, 1, 1, 1, 0, 0, 0],
[1, 1, 1, 1, 1, 0, 0, 0],
[1, 1, 1, 1, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1]])
}
- seq2seq tokenization of
(source text, target text)
>>> from asian_bart import AsianBartTokenizer
>>> tokenizer = AsianBartTokenizer.from_pretrained("hyunwoongko/asian-bart-ecjk")
>>> tokenizer.prepare_seq2seq_batch(
... src_texts="반가워",
... src_langs="ko_KR",
... tgt_texts="hello.",
... tgt_langs="en_XX",
... )
{
'input_ids': tensor([[22880, 49591, 3901, 2, 57523]]),
'attention_mask': tensor([[1, 1, 1, 1, 1]]),
'labels': tensor([[37199, 35816, 39539, 2, 57521]])
}
- all above batch tokenization settings work the same about target texts
>>> from asian_bart import AsianBartTokenizer
>>> tokenizer = AsianBartTokenizer.from_pretrained("hyunwoongko/asian-bart-ecjk")
>>> tokenizer.prepare_seq2seq_batch(
... src_texts=["hello.", "반가워", "你好", "こんにちは"],
... src_langs=["en_XX", "ko_KR", "zh_CN", "ja_XX"],
... tgt_texts=["hello.", "반가워", "你好", "こんにちは"],
... tgt_langs=["en_XX", "ko_KR", "zh_CN", "ja_XX"],
... )
{
'input_ids': tensor([[37199, 35816, 39539, 2, 57521, 1, 1, 1],
[22880, 49591, 3901, 2, 57523, 1, 1, 1],
[50356, 7929, 2, 57524, 1, 1, 1, 1],
[42990, 19092, 51547, 36821, 33899, 37382, 2, 57522]]),
'attention_mask': tensor([[1, 1, 1, 1, 1, 0, 0, 0],
[1, 1, 1, 1, 1, 0, 0, 0],
[1, 1, 1, 1, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1]]),
'labels': tensor([[37199, 35816, 39539, 2, 57521, 1, 1, 1],
[22880, 49591, 3901, 2, 57523, 1, 1, 1],
[50356, 7929, 2, 57524, 1, 1, 1, 1],
[42990, 19092, 51547, 36821, 33899, 37382, 2, 57522]])
}
Usage of models
- Interfaces of all functions are the same as mbart model on Huggingface transformers.
- Here is an example of using a asian bart model. (ecjk model)
- Other language work the same way. change both model and tokenizer's
from_pretrained
.- English only:
from_pretrained("hyunwoongko/asian-bart-en")
- Chinese only:
from_pretrained("hyunwoongko/asian-bart-zh")
- Japanese only:
from_pretrained("hyunwoongko/asian-bart-ja")
- Korean only:
from_pretrained("hyunwoongko/asian-bart-ko")
- English only:
# import modules
>>> import torch
>>> from asian_bart import AsianBartTokenizer, AsianBartForConditionalGeneration
>>> from transformers.models.bart.modeling_bart import shift_tokens_right
# create model and tokenizer
>>> tokenizer = AsianBartTokenizer.from_pretrained("hyunwoongko/asian-bart-ecjk")
>>> model = AsianBartForConditionalGeneration.from_pretrained("hyunwoongko/asian-bart-ecjk")
# tokenize texts
>>> tokens = tokenizer.prepare_seq2seq_batch(
... src_texts="Kevin is the <mask> man in the world.",
... src_langs="en_XX",
... tgt_texts="Kevin is the most kind man in the world.",
... tgt_langs="en_XX",
... )
>>> input_ids = tokens["input_ids"]
>>> attention_mask = tokens["attention_mask"]
>>> labels = tokens["labels"]
>>> decoder_input_ids = shift_tokens_right(labels, tokenizer.pad_token_id)
# forwarding model for training
>>> output = model(
... input_ids=input_ids,
... attention_mask=attention_mask,
... decoder_input_ids=decoder_input_ids,
... )
# compute loss
>>> lm_logits = outputs[0]
>>> loss_function = torch.nn.CrossEntropyLoss(
... ignore_index=tokenizer.pad_token_id
... )
>>> loss = loss_function(
... lm_logits.view(-1, lm_logits.shape[-1]),
... labels.view(-1)
... )
# generate text
>>> output = model.generate(
... input_ids=input_ids,
... attention_mask=attention_mask,
... decoder_start_token_id=tokenizer.lang_code_to_id["en_XX"],
... )
Downstream tasks
- You can train various downstream tasks with asian bart.
- All interfaces have the same usage as the Huggingface transformers.
- Supported classes:
AsianBartTokenizer
AsianBartModel
AsianBartForCausalLM
AsianBartForQuestionAnswering
AsianBartForConditionalGeneration
AsianBartForSequenceClassification
License
Copyright 2021 Hyunwoong Ko.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
File details
Details for the file asian_bart-1.0.1-py3-none-any.whl
.
File metadata
- Download URL: asian_bart-1.0.1-py3-none-any.whl
- Upload date:
- Size: 8.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3cc90067328557ea097e7420eab67c965118c7c63b96d5587cc2c8208b8bbd6f |
|
MD5 | 2182a3c2bd9bc471718a036e23c4358a |
|
BLAKE2b-256 | 41ff2f7659b517978c44cc4fb1c247c3e6d2d76c0466f459b157a43fb6beaaf9 |