Skip to main content

Converse with your favorite Amazon Bedrock LLM from the command line.

Project description

Ask Amazon Bedrock

Converse with your favorite Amazon Bedrock large language model from the command line.

This tool is a wrapper around the low-level Amazon Bedrock APIs and Langchain. Its main added value is that it locally persists AWS account and model configuration to enable quick and easy interaction.

Installation

⚠️ Requires Python >= 3.9

⚠️ Requires a working AWS CLI setup configured with a profile that allows Amazon Bedrock access. See CLI documentation for details.

pip install ask-bedrock

You can also build/run this project locally, see Building and Running Locally.

Usage

Activating models

Before you can use this command line tool, you need to request model access through the AWS Console in a region where Bedrock is available: Switch to the region where you want to run Bedrock, go to ”Model access“, click “Edit”, activate the models you wish to use, and then click “Save changes”.

Invocation

To start a conversation, simply enter the following command:

ask-bedrock converse

Upon the first run, you will be led through a configuration flow. To learn more about configuration options, see the Configuration section below.

If you’re fully configured, the tool will show you a >>> prompt and you can start interacting with the configured model.

Multi-line prompts can be wrapped into <<< >>> blocks.

To end your interaction, hit Ctrl + D. Note that the conversation will be lost.

Configuration

Ask Amazon Bedrock stores your user configuration in $HOME/.config/ask-bedrock/config.yaml. This file may contain several sets of configuration (contexts). For instance, you can use contexts to switch between different models. Use the --context parameter to select the context you'd like to use. The default context is default.

If no configuration is found for a selected context, a new one is created. If you want to change an existing config, use

ask-bedrock configure --context mycontext

You can also create or edit the configuration file yourself in $HOME/.config/ask-bedrock/config.yaml:

contexts:
  default:
    region: ""                  # an AWS region where you have activated Bedrock
    aws_profile: ""             # a profile from your ~/.aws/config file
    model_id: ""                # a Bedrock model, e.g. "ai21.j2-ultra-v1"
    model_params: "{}"          # a JSON object with parameters for the selected model

Model parameters

This JSON is passed to Langchain during client setup (as model_kwargs). The schema depends on the model that is used. Have a look at the examples.

If you want to configure multiple lines, model parameters can be wrapped in <<< >>>.

Building and Running Locally

pip install build
python -m build
python ask_bedrock/main.py converse

Feedback

As this tool is still early stage, we are very interested in hearing about your experience. Please take one minute to take a little survey: https://pulse.aws/survey/GTRWNHT1

Troubleshooting

Q: I’m getting the following error during invocation: “ValueError: Error raised by bedrock service: An error occurred (AccessDeniedException) when calling the InvokeModel operation: Your account is not authorized to invoke this API operation.”

A: You may have selected a model that is currently not yet activated for public usage. It may have been listed it in the selection of available models, but unfortunately some models (such as Amazon Titan) aren’t yet available via API.

Security

See CONTRIBUTING for more information.

License

This project is licensed under the Apache-2.0 License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ask-bedrock-0.0.5.tar.gz (9.0 kB view details)

Uploaded Source

Built Distribution

ask_bedrock-0.0.5-py3-none-any.whl (9.7 kB view details)

Uploaded Python 3

File details

Details for the file ask-bedrock-0.0.5.tar.gz.

File metadata

  • Download URL: ask-bedrock-0.0.5.tar.gz
  • Upload date:
  • Size: 9.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for ask-bedrock-0.0.5.tar.gz
Algorithm Hash digest
SHA256 d6a058153ed55d47ad6d3461f876a74b59c2d2afa3d9a55eabe1261b4e5aabe1
MD5 76fd4d9aec0b6796cbf3c86fb97a24eb
BLAKE2b-256 13a9bd87928064870b37e6b677f113a9369cf889e18f7367b3a852f714a2c877

See more details on using hashes here.

File details

Details for the file ask_bedrock-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: ask_bedrock-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 9.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for ask_bedrock-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 e1967d3684203599612e983bff7ae2d28f764836c36cb67553f9c8fd4272322d
MD5 9e674b41acac3c4ed9af7e8abf0bccd4
BLAKE2b-256 4f10e50d0d53a4a50943c6196b5ec65558d31643c190fdf93154630c570d8268

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page