Skip to main content

An intuitive and modular simulator for assessing the marginal value of a client's contribution in a decentralized setting.

Project description

Setting Configuration

In order to run the simulation, the Orchestrator instance must receive a settings object that contains all the necessary parameters. It is possible to store those parameters in a JSON format and load them as the Python dictionary by using asociita.utils.helper.load_from_json function. Below is an exemplary settings object embedded as a json file. All the elements are necessary unless stated otherwise.

{
    "orchestrator":{
        "iterations": int,
        "number_of_nodes": int,
        "local_warm_start": bool,
        "sample_size": int,
        "evaluation": "none" | "full"
        "save_metrics": bool,
	"save_models": bool,
	"save_path": str
	"nodes": [0,
	1,
	2]
    },
    "nodes":{
    "local_epochs": int,
    "model_settings": {
        "optimizer": "RMS",
        "batch_size": int,
        "learning_rate": float}
        }
}

The settings contains two dictionaries: orchestrator and nodes.

orchestrator contains all the settings necessary details of the training:

  • iterations is the number of rounds to be performed. Example: iterations:12
  • number_of_nodes is the number of nodes that will be included in the training. Example: number_of_nodes: 10
  • local_warm_start allows to distribute various pre-trained weights to different local clients. Not implemeneted yet. Example: local_warm_start: false.
  • sample_size is the size of the sample that will be taken each round. Example: sample_size : 4.
  • evaluation allows to control the evaluation procedure across the clients. Currently, only none or full are supported. Setting the evaluation to full will perform a full evaluation of every client included in the training. Example: evaluation: full
  • save_metrics allows to control whether the metrics should be saved in a csv file. Example: save_metrics: true.
  • save_models allows to control whether the models should be saved. Not implemeneted yet. Example: save_metrics: false.
  • save_path is the system path that will be used when saving the model. It is possible to define a saving_path in a method call.
  • nodes is the list containing the ids of all the nodes participating in the training. Length of nodes must be equal number_of_nodes.

nodes contains all the necessary configuration for nodes.

  • "local_epochs": the number of local epochs to be performed on the local nodes.
  • "model_settings" is a dictionary containing all the parameters for training the model.
    • optimizer is an optimizer that will be used during the training. Example: optimizer: "RMS"
    • batch_size is the batch size that will be used during the training. Example: batch_size: 32
    • learning_rate is the learning rate that will be used during the training. Example: learning_rate: 0.001

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

asociita-0.1.3.tar.gz (23.6 kB view details)

Uploaded Source

Built Distribution

asociita-0.1.3-py3-none-any.whl (34.9 kB view details)

Uploaded Python 3

File details

Details for the file asociita-0.1.3.tar.gz.

File metadata

  • Download URL: asociita-0.1.3.tar.gz
  • Upload date:
  • Size: 23.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.10.9 Windows/10

File hashes

Hashes for asociita-0.1.3.tar.gz
Algorithm Hash digest
SHA256 de327f362e1bb4b9cf8cdc3e836b18a9f7394bd746183ef351f1253ebdc57f12
MD5 2cbb4b011d635bf7b148246d9e03a950
BLAKE2b-256 b85ab0f10a0ebcaa990114a28a8b0f731c810b376051678e8c2dfeca7e3f5be6

See more details on using hashes here.

File details

Details for the file asociita-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: asociita-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 34.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.10.9 Windows/10

File hashes

Hashes for asociita-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 4f0949c7dc8512a177c029f908f27acddb1c81b04dadf0f589c0da3fae8f9e10
MD5 c6fcd6250a9747936e407d46f75a2126
BLAKE2b-256 a903fceb7db788eb3e77121cfac900ba4c53512ae508ef81625f1eba420b6a93

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page