Skip to main content

An intuitive and modular simulator for assessing the marginal value of a client's contribution in a decentralized setting.

Project description

Setting Configuration

In order to run the simulation, the Orchestrator instance must receive a settings object that contains all the necessary parameters. It is possible to store those parameters in a JSON format and load them as the Python dictionary by using asociita.utils.helper.load_from_json function. Below is an exemplary settings object embedded as a json file. All the elements are necessary unless stated otherwise.

{
    "orchestrator":{
        "iterations": int,
        "number_of_nodes": int,
        "local_warm_start": bool,
        "sample_size": int,
        "evaluation": "none" | "full"
        "save_metrics": bool,
	"save_models": bool,
	"save_path": str
	"nodes": [0,
	1,
	2]
    },
    "nodes":{
    "local_epochs": int,
    "model_settings": {
        "optimizer": "RMS",
        "batch_size": int,
        "learning_rate": float}
        }
}

The settings contains two dictionaries: orchestrator and nodes.

orchestrator contains all the settings necessary details of the training:

  • iterations is the number of rounds to be performed. Example: iterations:12
  • number_of_nodes is the number of nodes that will be included in the training. Example: number_of_nodes: 10
  • local_warm_start allows to distribute various pre-trained weights to different local clients. Not implemeneted yet. Example: local_warm_start: false.
  • sample_size is the size of the sample that will be taken each round. Example: sample_size : 4.
  • evaluation allows to control the evaluation procedure across the clients. Currently, only none or full are supported. Setting the evaluation to full will perform a full evaluation of every client included in the training. Example: evaluation: full
  • save_metrics allows to control whether the metrics should be saved in a csv file. Example: save_metrics: true.
  • save_models allows to control whether the models should be saved. Not implemeneted yet. Example: save_metrics: false.
  • save_path is the system path that will be used when saving the model. It is possible to define a saving_path in a method call.
  • nodes is the list containing the ids of all the nodes participating in the training. Length of nodes must be equal number_of_nodes.

nodes contains all the necessary configuration for nodes.

  • "local_epochs": the number of local epochs to be performed on the local nodes.
  • "model_settings" is a dictionary containing all the parameters for training the model.
    • optimizer is an optimizer that will be used during the training. Example: optimizer: "RMS"
    • batch_size is the batch size that will be used during the training. Example: batch_size: 32
    • learning_rate is the learning rate that will be used during the training. Example: learning_rate: 0.001

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

asociita-0.1.6.9.tar.gz (26.1 kB view details)

Uploaded Source

Built Distribution

asociita-0.1.6.9-py3-none-any.whl (38.9 kB view details)

Uploaded Python 3

File details

Details for the file asociita-0.1.6.9.tar.gz.

File metadata

  • Download URL: asociita-0.1.6.9.tar.gz
  • Upload date:
  • Size: 26.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.10.9 Windows/10

File hashes

Hashes for asociita-0.1.6.9.tar.gz
Algorithm Hash digest
SHA256 a87a6260bf805db9f3735103e114e4af23ccba200935eb257730de7687f47381
MD5 86c59b83ce2d1bb0e36ceba535e39047
BLAKE2b-256 3de5c75ac61b47c0e0286b48ddae149d226937d037c0adfa0fb3cb8217bd9915

See more details on using hashes here.

File details

Details for the file asociita-0.1.6.9-py3-none-any.whl.

File metadata

  • Download URL: asociita-0.1.6.9-py3-none-any.whl
  • Upload date:
  • Size: 38.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.10.9 Windows/10

File hashes

Hashes for asociita-0.1.6.9-py3-none-any.whl
Algorithm Hash digest
SHA256 23ca8f48907b5f5779eebfaafc3c35a11fb87269769c39aa080b60015fbee05a
MD5 c01be3ef223a0b52f71e1a1e9a68de61
BLAKE2b-256 4a0fbe0b5f9ff9ae1dc5816fe5715edca0264473c4c46626074a8255a1855419

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page