Skip to main content

Automated Systematic Review

Project description

ASReview bot

ASReview: Active learning for systematic reviews

Systematic Reviews are “top of the bill” in research. The number of scientific studies is increasing exponentially in many scholarly fields. Performing a sound systematic review is a time-consuming and sometimes boring task. Our software is designed to accelerate the step of screening abstracts and titles with a minimum of papers to be read by a human with no or very few false negatives.

The Active learning for Systematic Reviews (ASReview) project implements learning algorithms that interactively query the researcher. This way of interactive training is known as Active Learning. ASReview offers support for classical learning algorithms and state-of-the-art learning algorithms like neural networks.

ASReview software implements two different modes:

  • Oracle The oracle modus is used to perform a systematic review with interaction by the reviewer (the 'oracle' in literature on active learning). The software presents papers to the reviewer, whereafter the reviewer classifies them. See ASReview App.
  • Simulate The simulation modus is used to measure the performance of our software on existing systematic reviews. The software shows how many papers you could have potentially skipped during the systematic review.

Installation

The ASReview software requires Python 3.6+. Detailed step-by-step instructions to install Python and ASReview are available for Windows andMacOS users. The project is available on Pypi. Install the project with (Windows users might have to use the prefix python -m):

pip install asreview

Upgrade ASReview with the following command:

pip install --upgrade asreview

ASReview app

The ASReview team developed a user-friendly user interface to replace the old command line interface. The new interface is still under development but is already available for testing and training purposes.

ASReview Command Line Interface

Covid-19 plugin

Covid-19 Plugin

The ASReview team developed a plugin for researchers and doctors to facilitate the reading of literature on the Coronavirus. The plugin makes the CORD-19 dataset available in the ASReview software. We also constructed a second database with studies published after December 1st 2019 to search for relevant papers published during the Covid-19 crisis.

Install the plugin with the command below.

pip install asreview-covid19

Documentation

Documentation is available at asreview.rtfd.io. Please have a look at https://asreview.readthedocs.io/en/latest/quicktour.html for a quick tour through the user interface.

Check out the ASReview website, https://asreview.nl/, for more information and our blog.

  • automated-systematic-review-datasets A project with systematic review datasets optimized and processed for use with ASReview or other systematic review software. The project describes the preferred format to store systematic review datasets.
  • automated-systematic-review-simulations A repository with scripts for a simulation study and scripts for the aggregation and visualisation of the results.

Contact

This project is coordinated by by Rens van de Schoot (@Rensvandeschoot) and Daniel Oberski (@daob) and is part of the research work conducted by the Department of Methodology & Statistics, Faculty of Social and Behavioral Sciences, Utrecht University, The Netherlands. Maintainers are Jonathan de Bruin (Lead engineer, @J535D165) and Raoul Schram (@qubixes).

Got ideas for improvement? We would love to hear about your suggestions! Get started here . See who have contributed to ASReview here. For any questions or remarks, please send an email to asreview@uu.nl.

License

Build Status Documentation Status DOI

The ASReview software has an Apache 2.0 LICENSE. The ASReview team accepts no responsibility or liability for the use of the ASReview tool or any direct or indirect damages arising out of the application of the tool.

Citation

The following preprint can be used to cite the project:

van de Schoot, Rens, et al. “ASReview: Open Source Software for Efficient and Transparent Active Learning for Systematic Reviews.” ArXiv:2006.12166 [Cs], June 2020. arXiv.org, http://arxiv.org/abs/2006.12166.

For citing the software, please refer to the specific release of the ASReview software on Zenodo DOI. The menu on the right can be used to find the citation format of prevalence.

Project details


Release history Release notifications | RSS feed

This version

0.10

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

asreview-0.10.tar.gz (1.7 MB view details)

Uploaded Source

Built Distribution

asreview-0.10-py3-none-any.whl (1.8 MB view details)

Uploaded Python 3

File details

Details for the file asreview-0.10.tar.gz.

File metadata

  • Download URL: asreview-0.10.tar.gz
  • Upload date:
  • Size: 1.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for asreview-0.10.tar.gz
Algorithm Hash digest
SHA256 55f4fa974b55d2105007be8ed4dabda31204e53251f820768d671198be74eefe
MD5 7e97da7c2d38a4f6df90be2599c6b80d
BLAKE2b-256 b978e9a14e477542f5af3c2b075e1db82e368e9f0634799328d59f1dccef2f57

See more details on using hashes here.

File details

Details for the file asreview-0.10-py3-none-any.whl.

File metadata

  • Download URL: asreview-0.10-py3-none-any.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for asreview-0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 520b708cd605264c4e0cbf26cc66e395f4872c8ecd56598372ee4ec07c3b6c5f
MD5 c7f56c7b776ad03ce75e61e948c1d0bc
BLAKE2b-256 0336cb73490b6ae0b6b1fcc540c3cc18601a4e20119d36bd56dea949e02dd872

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page