Skip to main content

Active learning for Systematic Reviews

Project description

ASReview logo

ASReview: Active learning for Systematic Reviews

Systematic Reviews are “top of the bill” in research. The number of scientific studies is increasing exponentially in many scholarly fields. Performing a sound systematic review is a time-consuming and sometimes boring task. Our software is designed to accelerate the step of screening abstracts and titles with a minimum of papers to be read by a human with no or very few false negatives.

The Active learning for Systematic Reviews (ASReview) project implements machine learning algorithms that interactively query the researcher. This way of interactive machine learning is known as Active Learning. ASReview offers support for classical learning algorithms and state-of-the-art learning algorithms like neural networks.

ASReview software implements two different modes:

  • ASReview LAB This modus is used to perform a systematic review with interaction by the reviewer (the 'oracle' in literature on active learning). The software presents papers to the reviewer, whereafter the reviewer classifies them. See ASReview LAB.
  • Simulate The simulation modus is used to measure the performance of the active learning software on the results of fully labeled systematic reviews. To use the simulation mode, knowledge on programming and bash/Command Prompt is highly recommanded.

Installation

The ASReview software requires Python 3.6+. Detailed step-by-step instructions to install Python and ASReview are available for Windows and macOS users. The project is available on Pypi. Install the project with (Windows users might have to use the prefix python -m):

pip install asreview

Upgrade ASReview with the following command:

pip install --upgrade asreview

ASReview LAB

ASReview LAB is a user-friendly interface for screening documents and experimentation with AI-aided systematic reviews. Read more about using the software in the Quick Tour.

ASReview LAB

Covid-19 plugin

Covid-19 Plugin

The ASReview team developed a plugin for researchers and doctors to facilitate the reading of literature on the Coronavirus. The plugin makes the CORD-19 dataset available in the ASReview software. A second database with studies published after December 1st 2019 is available as well (this dataset is more specific for publications on COVID-19).

Install the plugin with the command below.

pip install asreview-covid19

Documentation

Documentation is available at asreview.rtfd.io. Please have a look at https://asreview.readthedocs.io/en/latest/quicktour.html for a quick tour through the user interface.

Check out the ASReview website, https://asreview.nl/, for more information and our blog.

  • systematic-review-datasets A project with systematic review datasets optimized and processed for use with ASReview or other systematic review software. The project describes the preferred format to store systematic review datasets.
  • systematic-review-simulations A repository with scripts for a simulation study and scripts for the aggregation and visualisation of the results.

Contact

This project is coordinated by Rens van de Schoot (@Rensvandeschoot) and Daniel Oberski (@daob) and is part of the research work conducted by the Department of Methodology & Statistics, Faculty of Social and Behavioral Sciences, Utrecht University, The Netherlands. Maintainers are Jonathan de Bruin (Lead engineer, @J535D165) and Raoul Schram (@qubixes).

Got ideas for improvement? We would love to hear about your suggestions! Get started here . See who have contributed to ASReview here. For any questions or remarks, please send an email to asreview@uu.nl.

License

Build Status Documentation Status DOI

The ASReview software has an Apache 2.0 LICENSE. The ASReview team accepts no responsibility or liability for the use of the ASReview tool or any direct or indirect damages arising out of the application of the tool.

Citation

The preprint ArXiv:2006.12166 can be used to cite this project.

van de Schoot, Rens, et al. “ASReview: Open Source Software for Efficient and
Transparent Active Learning for Systematic Reviews.” ArXiv:2006.12166 [Cs],
June 2020. arXiv.org, http://arxiv.org/abs/2006.12166.

For citing the software, please refer to the specific release of the ASReview software on Zenodo DOI. The menu on the right can be used to find the citation format of prevalence.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

asreview-0.13.3.tar.gz (2.3 MB view details)

Uploaded Source

Built Distribution

asreview-0.13.3-py3-none-any.whl (2.4 MB view details)

Uploaded Python 3

File details

Details for the file asreview-0.13.3.tar.gz.

File metadata

  • Download URL: asreview-0.13.3.tar.gz
  • Upload date:
  • Size: 2.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for asreview-0.13.3.tar.gz
Algorithm Hash digest
SHA256 60272623c13bb3edb75a31b9c464b1f6beb6badb9cc428fdfbcc5ebbe82ce78b
MD5 5276ac62a4372abc88ea2840ddbdc12a
BLAKE2b-256 7a453b6d93832e8625871c5c96071a6eebcbf8378c4798f5e418323ca66caf0c

See more details on using hashes here.

File details

Details for the file asreview-0.13.3-py3-none-any.whl.

File metadata

  • Download URL: asreview-0.13.3-py3-none-any.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for asreview-0.13.3-py3-none-any.whl
Algorithm Hash digest
SHA256 427d5700a59deea098a56c9ffed09a7fea0698f6eb3ca520f801ff0c355f5878
MD5 ccc2a62eb950b1bffd7a43eed9b8ccf7
BLAKE2b-256 514d86e3fadf73085416d847bc6b820427dab74d0c06f5c80132524ee010b3d9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page