Skip to main content

No project description provided

Project description

asrp

ASR text preprocessing utility

install

pip install asrp

usage - preprocess

input: dictionary, with key sentence
output: preprocessed result, inplace handling.

import asrp

batch_data = {
    'sentence': "I'm fine, thanks."
}
asrp.fun_en(batch_data)

dynamic loading

import asrp

batch_data = {
    'sentence': "I'm fine, thanks."
}
preprocessor = getattr(asrp, 'fun_en')
preprocessor(batch_data)

usage - evaluation

import asrp

targets = ['HuggingFace is great!', 'Love Transformers!', 'Let\'s wav2vec!']
preds = ['HuggingFace is awesome!', 'Transformers is powerful.', 'Let\'s finetune wav2vec!']
print("chunk size WER: {:2f}".format(100 * asrp.chunked_wer(targets, preds, chunk_size=None)))
print("chunk size CER: {:2f}".format(100 * asrp.chunked_cer(targets, preds, chunk_size=None)))

usage - hubertcode

import asrp

hc = asrp.HubertCode("facebook/hubert-large-ll60k", './km_feat_100_layer_20', 20)
hc('voice file path')

usage - code2speech

import asrp

code = []  # discrete unit
# download tts checkpoint and waveglow_checkpint from https://github.com/pytorch/fairseq/tree/main/examples/textless_nlp/gslm/unit2speech
cs = asrp.Code2Speech(tts_checkpoint='./tts_checkpoint_best.pt', waveglow_checkpint='waveglow_256channels_new.pt')
cs(code)

# play on notebook
import IPython.display as ipd

ipd.Audio(data=cs(code), autoplay=False, rate=cs.sample_rate)

usage - liveASR

from asrp.live import LiveHFSpeech

english_model = "voidful/wav2vec2-xlsr-multilingual-56"
asr = LiveHFSpeech(english_model, device_name="default")
asr.start()

try:
    while True:
        text, sample_length, inference_time = asr.get_last_text()
        print(f"{sample_length:.3f}s"
              + f"\t{inference_time:.3f}s"
              + f"\t{text}")

except KeyboardInterrupt:
    asr.stop()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

asrp-0.0.37.tar.gz (34.6 kB view details)

Uploaded Source

Built Distribution

asrp-0.0.37-py3-none-any.whl (33.2 kB view details)

Uploaded Python 3

File details

Details for the file asrp-0.0.37.tar.gz.

File metadata

  • Download URL: asrp-0.0.37.tar.gz
  • Upload date:
  • Size: 34.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.9

File hashes

Hashes for asrp-0.0.37.tar.gz
Algorithm Hash digest
SHA256 11bc9cdc87fdabe8a54af7748b25e0f4e519a69dc462ebdda76a1e32ad49164b
MD5 8d47f02c55bb6e0c862968942a4bb393
BLAKE2b-256 306b0c246ee63166f1c272bacab27f01ebc97572fbe904c155a03236fe3c701f

See more details on using hashes here.

File details

Details for the file asrp-0.0.37-py3-none-any.whl.

File metadata

  • Download URL: asrp-0.0.37-py3-none-any.whl
  • Upload date:
  • Size: 33.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.9

File hashes

Hashes for asrp-0.0.37-py3-none-any.whl
Algorithm Hash digest
SHA256 8ce2e6bfcaaa102be7fa36b70e8a1ec236ca4bd2dbff872a8291bf166746e92f
MD5 72a97f9d2aa1467de11c1315ef7f51ea
BLAKE2b-256 036068fa4e4f16d6e6c1fcc92336a8c4268566ed4496c1b0f00f25d995a6f4ff

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page