Skip to main content

No project description provided

Project description

asrp

ASR text preprocessing utility

install

pip install asrp

usage - preprocess

input: dictionary, with key sentence
output: preprocessed result, inplace handling.

import asrp

batch_data = {
    'sentence': "I'm fine, thanks."
}
asrp.fun_en(batch_data)

dynamic loading

import asrp

batch_data = {
    'sentence': "I'm fine, thanks."
}
preprocessor = getattr(asrp, 'fun_en')
preprocessor(batch_data)

usage - evaluation

import asrp

targets = ['HuggingFace is great!', 'Love Transformers!', 'Let\'s wav2vec!']
preds = ['HuggingFace is awesome!', 'Transformers is powerful.', 'Let\'s finetune wav2vec!']
print("chunk size WER: {:2f}".format(100 * asrp.chunked_wer(targets, preds, chunk_size=None)))
print("chunk size CER: {:2f}".format(100 * asrp.chunked_cer(targets, preds, chunk_size=None)))

usage - hubertcode

import asrp

hc = asrp.HubertCode("facebook/hubert-large-ll60k", './km_feat_100_layer_20', 20)
hc('voice file path')

usage - code2speech

import asrp

code = []  # discrete unit
# download tts checkpoint and waveglow_checkpint from https://github.com/pytorch/fairseq/tree/main/examples/textless_nlp/gslm/unit2speech
cs = asrp.Code2Speech(tts_checkpoint='./tts_checkpoint_best.pt', waveglow_checkpint='waveglow_256channels_new.pt')
cs(code)

# play on notebook
import IPython.display as ipd

ipd.Audio(data=cs(code), autoplay=False, rate=cs.sample_rate)

usage - liveASR

from asrp.live import LiveHFSpeech

english_model = "voidful/wav2vec2-xlsr-multilingual-56"
asr = LiveHFSpeech(english_model, device_name="default")
asr.start()

try:
    while True:
        text, sample_length, inference_time = asr.get_last_text()
        print(f"{sample_length:.3f}s"
              + f"\t{inference_time:.3f}s"
              + f"\t{text}")

except KeyboardInterrupt:
    asr.stop()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

asrp-0.0.38.tar.gz (34.6 kB view details)

Uploaded Source

Built Distribution

asrp-0.0.38-py3-none-any.whl (33.3 kB view details)

Uploaded Python 3

File details

Details for the file asrp-0.0.38.tar.gz.

File metadata

  • Download URL: asrp-0.0.38.tar.gz
  • Upload date:
  • Size: 34.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.9

File hashes

Hashes for asrp-0.0.38.tar.gz
Algorithm Hash digest
SHA256 81a33bda17f28009c40ab500126c2b5d8bd3c89939a411edc1e0b8815ec97747
MD5 339838560f42903af35da523365ef4bb
BLAKE2b-256 cf45fbc3012e10707ad93d6f3094930ec9c30955e685af129919a655ba552122

See more details on using hashes here.

File details

Details for the file asrp-0.0.38-py3-none-any.whl.

File metadata

  • Download URL: asrp-0.0.38-py3-none-any.whl
  • Upload date:
  • Size: 33.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.9

File hashes

Hashes for asrp-0.0.38-py3-none-any.whl
Algorithm Hash digest
SHA256 cda0aec062719b30c29ecea84f2e2751b5e28cd5b663f79b2d953b6209d9595f
MD5 0d9543e600e817b711d4e1b2afd17663
BLAKE2b-256 b727221945696770bf75564be6a9ff7793362b74e8281710577d282e8d458a7d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page