Skip to main content

No project description provided

Project description

asrp

ASR text preprocessing utility

install

pip install asrp

usage - preprocess

input: dictionary, with key sentence
output: preprocessed result, inplace handling.

import asrp

batch_data = {
    'sentence': "I'm fine, thanks."
}
asrp.fun_en(batch_data)

dynamic loading

import asrp

batch_data = {
    'sentence': "I'm fine, thanks."
}
preprocessor = getattr(asrp, 'fun_en')
preprocessor(batch_data)

usage - evaluation

import asrp

targets = ['HuggingFace is great!', 'Love Transformers!', 'Let\'s wav2vec!']
preds = ['HuggingFace is awesome!', 'Transformers is powerful.', 'Let\'s finetune wav2vec!']
print("chunk size WER: {:2f}".format(100 * asrp.chunked_wer(targets, preds, chunk_size=None)))
print("chunk size CER: {:2f}".format(100 * asrp.chunked_cer(targets, preds, chunk_size=None)))

usage - hubertcode

import asrp

hc = asrp.HubertCode("facebook/hubert-large-ll60k", './km_feat_100_layer_20', 20)
hc('voice file path')

usage - code2speech

import asrp

code = []  # discrete unit
# download tts checkpoint and waveglow_checkpint from https://github.com/pytorch/fairseq/tree/main/examples/textless_nlp/gslm/unit2speech
cs = asrp.Code2Speech(tts_checkpoint='./tts_checkpoint_best.pt', waveglow_checkpint='waveglow_256channels_new.pt')
cs(code)

# play on notebook
import IPython.display as ipd

ipd.Audio(data=cs(code), autoplay=False, rate=cs.sample_rate)

usage - liveASR

from asrp.live import LiveHFSpeech

english_model = "voidful/wav2vec2-xlsr-multilingual-56"
asr = LiveHFSpeech(english_model, device_name="default")
asr.start()

try:
    while True:
        text, sample_length, inference_time = asr.get_last_text()
        print(f"{sample_length:.3f}s"
              + f"\t{inference_time:.3f}s"
              + f"\t{text}")

except KeyboardInterrupt:
    asr.stop()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

asrp-0.0.39.tar.gz (34.6 kB view details)

Uploaded Source

Built Distribution

asrp-0.0.39-py3-none-any.whl (33.3 kB view details)

Uploaded Python 3

File details

Details for the file asrp-0.0.39.tar.gz.

File metadata

  • Download URL: asrp-0.0.39.tar.gz
  • Upload date:
  • Size: 34.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.9

File hashes

Hashes for asrp-0.0.39.tar.gz
Algorithm Hash digest
SHA256 b22cad23e05c6a9227e624be75fd01a320d37be81a5e8bb1864034b2bac40fdd
MD5 76c3b80e32ba7f4219cf5112fdc6cbd8
BLAKE2b-256 3b10405477a9e7d7c8a9831d49fadbeae0d9efc66f3317e5dfe923a6764bfc1d

See more details on using hashes here.

File details

Details for the file asrp-0.0.39-py3-none-any.whl.

File metadata

  • Download URL: asrp-0.0.39-py3-none-any.whl
  • Upload date:
  • Size: 33.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.9

File hashes

Hashes for asrp-0.0.39-py3-none-any.whl
Algorithm Hash digest
SHA256 1e140015afc7aa810de4186d442b6f0cfec20e132020d656aa200022c6c5c6a8
MD5 c50866bf98b650b60a6ff5726e534f7f
BLAKE2b-256 d7044dba447c0acad975b93919a3ef262b1a85953cb7c3a316ef0f2a35561f79

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page