Skip to main content

No project description provided

Project description

asrp

ASR text preprocessing utility

install

pip install asrp

usage - preprocess

input: dictionary, with key sentence
output: preprocessed result, inplace handling.

import asrp

batch_data = {
    'sentence': "I'm fine, thanks."
}
asrp.fun_en(batch_data)

dynamic loading

import asrp

batch_data = {
    'sentence': "I'm fine, thanks."
}
preprocessor = getattr(asrp, 'fun_en')
preprocessor(batch_data)

usage - evaluation

import asrp

targets = ['HuggingFace is great!', 'Love Transformers!', 'Let\'s wav2vec!']
preds = ['HuggingFace is awesome!', 'Transformers is powerful.', 'Let\'s finetune wav2vec!']
print("chunk size WER: {:2f}".format(100 * asrp.chunked_wer(targets, preds, chunk_size=None)))
print("chunk size CER: {:2f}".format(100 * asrp.chunked_cer(targets, preds, chunk_size=None)))

usage - hubertcode

import asrp

hc = asrp.HubertCode("facebook/hubert-large-ll60k", './km_feat_100_layer_20', 20)
hc('voice file path')

usage - code2speech

import asrp

code = []  # discrete unit
# download tts checkpoint and waveglow_checkpint from https://github.com/pytorch/fairseq/tree/main/examples/textless_nlp/gslm/unit2speech
cs = asrp.Code2Speech(tts_checkpoint='./tts_checkpoint_best.pt', waveglow_checkpint='waveglow_256channels_new.pt')
cs(code)

# play on notebook
import IPython.display as ipd

ipd.Audio(data=cs(code), autoplay=False, rate=cs.sample_rate)

usage - liveASR

from asrp.live import LiveHFSpeech

english_model = "voidful/wav2vec2-xlsr-multilingual-56"
asr = LiveHFSpeech(english_model, device_name="default")
asr.start()

try:
    while True:
        text, sample_length, inference_time = asr.get_last_text()
        print(f"{sample_length:.3f}s"
              + f"\t{inference_time:.3f}s"
              + f"\t{text}")

except KeyboardInterrupt:
    asr.stop()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

asrp-0.0.42.tar.gz (34.7 kB view details)

Uploaded Source

Built Distribution

asrp-0.0.42-py3-none-any.whl (33.4 kB view details)

Uploaded Python 3

File details

Details for the file asrp-0.0.42.tar.gz.

File metadata

  • Download URL: asrp-0.0.42.tar.gz
  • Upload date:
  • Size: 34.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.10

File hashes

Hashes for asrp-0.0.42.tar.gz
Algorithm Hash digest
SHA256 8b23f39758aee64c1ccdc5163bb58b47a9132a73ac694288d4e468a0a4da4142
MD5 6c6928caec744aff47322ac1043383a9
BLAKE2b-256 b78b53498c3af61f37fd63ef110a13b7267b6ee9ea3a03865d48f3c0aa7708e9

See more details on using hashes here.

File details

Details for the file asrp-0.0.42-py3-none-any.whl.

File metadata

  • Download URL: asrp-0.0.42-py3-none-any.whl
  • Upload date:
  • Size: 33.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.10

File hashes

Hashes for asrp-0.0.42-py3-none-any.whl
Algorithm Hash digest
SHA256 41aa850adbd94ce6bc4d431a6ef0325ef1dbd4480bac2aeb8281f564ac43eead
MD5 f764c9a60de4b935a2779716f7bce5d0
BLAKE2b-256 8aab6a0159c8d9facad26c89d4b001ed369b1e3056dd1d0bfee7264d222c07e4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page